scholarly journals Decolourisation Capabilities of Ligninolytic Enzymes Produced byMarasmius cladophyllusUMAS MS8 on Remazol Brilliant Blue R and Other Azo Dyes

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Ngieng Ngui Sing ◽  
Ahmad Husaini ◽  
Azham Zulkharnain ◽  
Hairul Azman Roslan

Marasmius cladophylluswas examined for its ability to degradatively decolourise the recalcitrant dye Remazol Brilliant Blue R (RBBR) and screened for the production of ligninolytic enzymes using specific substrates. Monitoring dye decolourisation by the decrease in absorbance ratio ofA592/A500shows that the decolourisation of RBBR dye was associated with the dye degradation.Marasmius cladophyllusproduces laccase and lignin peroxidase in glucose minimal liquid medium containing RBBR. Both enzyme activities were increased, with laccase activity recorded 70 times higher reaching up to 390 U L−1on day 12. Further in vitro RBBR dye decolourisation using the culture medium shows that laccase activity was correlated with the dye decolourisation. Fresh RBBR dye continuously supplemented into the decolourised culture medium was further decolourised much faster in the subsequent round of the RBBR dye decolourisation. In vitro dye decolourisation using the crude laccase not only decolourised 76% of RBBR dye in just 19 hours but also decolourised 54% of Orange G and 33% of Congo red at the same period of time without the use of any exogenous mediator. This rapid dye decolourisation ability of the enzymes produced byM. cladophyllusthus suggested its possible application in the bioremediation of dye containing wastewater.

2009 ◽  
Vol 52 (5) ◽  
pp. 1075-1082 ◽  
Author(s):  
Sérgio Luiz Moreira Neto ◽  
Dácio Roberto Matheus ◽  
Kátia Maria Gomes Machado

The basidiomycete fungi Lentinus crinitus and Psilocybe castanella are being evaluated in a bioremediation process of soils contaminated with organochlorine industrial residues in the Baixada Santista, São Paulo. The aim of the present study was to determine the influence of pH on the fungal growth, in vitro decolorization of anthraquinonic dye Remazol Brilliant Blue R (RBBR) and laccase activity. The pH of the culture medium influenced the growth of L. crinitus and P. castanella, which presented less growth at pH 5.9 and pH 2.7, respectively. The fungi were able to modify the pH of the culture medium, adjusting it to the optimum pH for growth which was close to 4.5. Decolorization of the RBBR was maximal at a pH of 2.5 to 3.5. Higher laccase activity was observed at pH 3.5 and pH 4.5 for L. crinitus and P. castanella, respectively. pH was found to be an important parameter for both the growth of these fungi and the enzymatic system involved in RBBR decolorization.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3914 ◽  
Author(s):  
Peng Qin ◽  
Yuetong Wu ◽  
Bilal Adil ◽  
Jie Wang ◽  
Yunfu Gu ◽  
...  

Many dyes and pigments are used in textile and printing industries, and their wastewater has been classed as a top source of pollution. Biodegradation of dyes by fungal laccase has great potential. In this work, the influence of reaction time, pH, temperature, dye concentration, metal ions, and mediators on laccase-catalyzed Remazol Brilliant Blue R dye (RBBR) decolorization were investigated in vitro using crude laccase from the white-rot fungus Ganoderma lucidum. The optimal decolorization percentage (50.3%) was achieved at 35 °C, pH 4.0, and 200 ppm RBBR in 30 min. The mediator effects from syringaldehyde, 1-hydroxybenzotriazole, and vanillin were compared, and 0.1 mM vanillin was found to obviously increase the decolorization percentage of RBBR to 98.7%. Laccase-mediated decolorization percentages significantly increased in the presence of 5 mM Na+ and Cu2+, and decolorization percentages reached 62.4% and 62.2%, respectively. Real-time fluorescence-quantitative PCR (RT-PCR) and protein mass spectrometry results showed that among the 15 laccase isoenzyme genes, Glac1 was the main laccase-contributing gene, contributing the most to the laccase enzyme activity and decolorization process. These results also indicate that under optimal conditions, G. lucidum laccases, especially Glac1, have a strong potential to remove RBBR from reactive dye effluent.


Chemosphere ◽  
2007 ◽  
Vol 69 (5) ◽  
pp. 795-802 ◽  
Author(s):  
Ivana Eichlerová ◽  
Ladislav Homolka ◽  
Oldřich Benada ◽  
Olga Kofroňová ◽  
Tomáš Hubálek ◽  
...  

2001 ◽  
Vol 66 (4) ◽  
pp. 663-675 ◽  
Author(s):  
Markéta Mikšanová ◽  
Jiří Hudeček ◽  
Jan Páca ◽  
Marie Stiborová

Thein vitroenzymatic metabolism of a recalcitrant dye Remazol Brilliant Blue R (RBBR) was investigated using horseradish peroxidase (HRP). At optimum pH (4.5), the apparent Michaelis constant (KM) value for the oxidation of RBBR catalyzed by HRP is 14.8 μmol l-1. HRP-mediated conversion of RBBR proceedsviaa conventional peroxidase reaction, by a sequential one-electron oxidation of two molecules of RBBR by the peroxidase Compounds I and II. The oxidation is inhibited by radical trapping agents (nicotinamide adenine dinucleotide reduced (NADH), ascorbate, glutathione). This confirms that the peroxidase-mediated oxidation of RBBR proceedsviaradical mechanism. Gel permeation profile of the RBBR oxidation products shows that the pattern of molecular weight distribution was shifted to the higher molecular weight region indicating formation of RBBR oligomers. In addition to HRP, the RBBR dye is also oxidized by another peroxidase, the mammalian lactoperoxidase.


2016 ◽  
Vol 80 (2) ◽  
Author(s):  
. SUHARYANTO ◽  
Irma KRESNAWATY ◽  
Haryo Tejo PRAKOSO ◽  
Deden Dewantara ERIS

Abstract White-rot fungi (WRF) are belong to Basidiomycetes group that capable to degrade lignin, because they produce extracelullar ligninolytic enzymes such as lignin peroxsidase (Li-P), mangan peroxidase (Mn-P) and laccase. The ligninolytic activity can be used in bioprocess oxidation system such as biopulping, biobleaching and bioremediation.  The purposes of this research were to determine the optimum conditions of growth and ligni-nolytic activity of  Omphalina and to observe its potential to decolorize cosmetics wastewater.  Omphalina sp. was grown on media of PDA-Remazol Brilliant Blue R (RBBR) and PDA-Guaiacol (GU) at various pH and temperature conditions. The decolorization of cosmetic effluent was conducted by applying Omphalina sp. at various dose of inoculum.  Decolorization rate and change of COD were observed for eight days. The  results  showed that Ompha-lina sp. could grow and produce peroxidase enzyme both on RBBR and GU media at pH 4.5-8.5  and temperature 23-350C. Optimum dose of inoculum was as much as 5%  w/v at which the fungus was able to  decolorize cosmetic factory effluent up to 92.79% and to decrease COD value up to  48.57 % after eight days of incubation.Abstrak Jamur pelapuk putih (JPP) merupakan jamur kelompok Basidiomycetes yang mampu mendegradasi lignin karena memproduksi enzim-enzim ligninolitik ekstraseluler seperti lignin peroksidase (Li-P), mangan peroksidase (Mn-P) dan lakase.  Kemampuan ligninolitik JPP dapat dimanfaatkan dalam sistem oksidasi bioproses seperti biopulping, biobleaching dan bioremediasi. Pene-litian bertujuan menetapkan kondisi optimum pertumbuhan Omphalina sp. dan aktivitas ligninolitik yang dihasilkan-nya serta mempelajari potensinya dalam mendekolorisasi limbah cair kosmetik. Omphalina sp. ditumbuhkan dalam media PDA-Remazol Brilliant Blue R (RBBR) dan PDA-Guaiakol (GU)  pada  berbagai variasi pH dan suhu. Percobaan dekolorisasi limbah cair kosmetik dilakukan dengan aplikasi inokulum dalam berbagai dosis. Laju dekolorisasi dan perubahan COD diamati selama delapan hari. Hasil penelitian menunjukkan Omphalina sp. tumbuh dan menghasilkan enzim peroksidase, baik pada  media RBBR maupun GU pada pH 4,5-8,5 dan suhu 25-350C. Dosis optimum aplikasi Omphalina sp. adalah 5% (b/v) yang mampu mendekolorisasi limbah cair pabrik kosmetik hingga 92,79%  dan menurunkan COD 48,57% setelah delapan hari.


2012 ◽  
Vol 7 (5) ◽  
pp. 948-956 ◽  
Author(s):  
Teresa Korniłłowicz-Kowalska ◽  
Kamila Rybczyńska

AbstractAn anamorphic Bjerkandera adusta CCBAS 930 strain isolated from soil was found to decolorize two anthraquinonic dyes: Remazol Brilliant Blue R and Poly R-478. The reduction in the level of phenolic compounds in liquid B. adusta cultures containing RBBR and Poly R-478 was correlated with decolorization of studied dyes, which suggested their biodegradation. It was shown that this process was coupled with induction of secondary metabolism (idiophase) and peak peroxidase activity in culture medium, and the appearance of aerial mycelium. Decolorization of dyes depended on the presence of glucose (cometabolism).


Sign in / Sign up

Export Citation Format

Share Document