Laccase Activity from Fresh Fruiting Bodies of Ganoderma sp. MK05: Purification and Remazol Brilliant Blue R Decolorization

2008 ◽  
Vol 9 (1) ◽  
pp. 83-87 ◽  
Author(s):  
Saranyu Khammuang ◽  
Rakrudee Sarnthima
2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Ngieng Ngui Sing ◽  
Ahmad Husaini ◽  
Azham Zulkharnain ◽  
Hairul Azman Roslan

Marasmius cladophylluswas examined for its ability to degradatively decolourise the recalcitrant dye Remazol Brilliant Blue R (RBBR) and screened for the production of ligninolytic enzymes using specific substrates. Monitoring dye decolourisation by the decrease in absorbance ratio ofA592/A500shows that the decolourisation of RBBR dye was associated with the dye degradation.Marasmius cladophyllusproduces laccase and lignin peroxidase in glucose minimal liquid medium containing RBBR. Both enzyme activities were increased, with laccase activity recorded 70 times higher reaching up to 390 U L−1on day 12. Further in vitro RBBR dye decolourisation using the culture medium shows that laccase activity was correlated with the dye decolourisation. Fresh RBBR dye continuously supplemented into the decolourised culture medium was further decolourised much faster in the subsequent round of the RBBR dye decolourisation. In vitro dye decolourisation using the crude laccase not only decolourised 76% of RBBR dye in just 19 hours but also decolourised 54% of Orange G and 33% of Congo red at the same period of time without the use of any exogenous mediator. This rapid dye decolourisation ability of the enzymes produced byM. cladophyllusthus suggested its possible application in the bioremediation of dye containing wastewater.


Biologia ◽  
2014 ◽  
Vol 69 (11) ◽  
Author(s):  
Denisse González-Ramírez ◽  
Claudia Muro-Urista ◽  
Ainhoa Arana-Cuenca ◽  
Alejandro Téllez-Jurado ◽  
Aldo González-Becerra

AbstractEnzyme production by immobilized Phanerochaete chrysosporium was evaluated in airlift bioreactor and agitated cultures. Free mycelium and immobilized mycelium on alginate beads were tested in the decolourization of 50 and 500 mg/L of Remazol Brilliant Blue R. Dye concentration did not inhibit the fungi development in all tests. In addition, high decolourization percentage of dye was found with free mycelium (99%) in agitated flasks and with immobilized mycelium in airlift (98%). However, decolourization period by immobilized mycelium (120 h) was greater than that by the free mycelium (14 h). Important manganese peroxidase, lignine peroxidase and laccase activities were identified in decolourization process. Manganese peroxidase appeared to be promoted by high dye concentrations during the treatment with immobilized mycelium, but this enzyme was not detected with free mycelium in airlift. Bioreactor prompted also laccase and lignine peroxidase actions in both tests; free mycelium registered a maximum laccase action of 31.569 × 103 U/L in 70 h, whereas immobilized mycelium registered 1.680 × 103 U/L in 170 h, while lignine peroxidase secretion by free P. chrysosporium was higher (1.300 × 103 U/L) than immobilized mycelium (1.250 × 103 U/L). Maximum laccase activity coincided with the maximum percentage of decolourization, however, high peroxidase activity was identified from the start of dye treatment.


RSC Advances ◽  
2016 ◽  
Vol 6 (27) ◽  
pp. 22395-22410 ◽  
Author(s):  
K. Z. Elwakeel ◽  
A. A. El-Bindary ◽  
A. Ismail ◽  
A. M. Morshidy

Chitosan, glycidyl methacrylate (synthetic polymer) and magnetite are combined to produce novel magnetic macro-reticular hybrid synthetic–natural materials which are shown to be effective sorbents for RBBR ions.


2021 ◽  
Author(s):  
Ali H. Jawad ◽  
Ahmed Saud Abdulhameed ◽  
Elmira Kashi ◽  
Zaher Mundher Yaseen ◽  
Zeid A. ALOthman ◽  
...  

Abstract Kaolin clay (KN) was employed as an inorganic filler to modify a cross-linked chitosan-glyoxal as Schiff’s-based chitosan composite derivative (CTS-GLY). The resulting (CTS-GLY/KN) was found to be a promising composite synthetic biopolymer that can be potentially utilized for color removal as well as COD reduction of an industrial anionic dye (remazol brilliant blue R, RBBR). The surface porosity, crystallinity, morphology, functionality, charge, and amine content of the CTS-GLY/KN were studied using BET, XRD, SEM, FTIR, pHpzc and pH-potentiometric titration analyses, respectively. Response surface methodology-Box-Behnken design (RSM-BBD) was used to optimize the impact of the main input factors on the color removal and COD reduction of RBBR. The adsorptive performance CTS-GLY/KN towards RBBR was well-defined by both Langmuir and Freundlich isotherm models with highest adsorption capacity of 447.1 mg/g at 30 ˚C. This finding reveals that CTS-GLY/KN can be utilized as a promising, feasible, and environmentally friendly composite-biosorbent for color removal and COD reduction of textile dyes from aqueous medium.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Aisha Malik ◽  
S. Hameed ◽  
M. J. Siddiqui ◽  
M. M. Haque ◽  
M. Muneer

Nanocrystalline TiO2particles doped with different concentrations of Cerium (Ce, 1–10%) have been synthesized using sol-gel method. The prepared particles were characterized by standard analytical techniques such as X-ray diffraction (XRD), FTIR and Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). The XRD analysis shows no change in crystal structure of TiO2after doping with different concentrations of Ce, which indicates the single-phase polycrystalline material. The SEM analysis shows the partial crystalline nature of undoped, and doped TiO2and TEM analysis shows the particle sizes were in the range of 9–14 nm in size. The a.c. analysis shows that the dielectric constantεand dielectric loss tanδdecrease with the increase in frequency. The dielectric property decreases with the increase in dopant concentration. It is also observed that the impedance increases with an increase in dopant concentration. The photocatalytic activity of the synthesized particles (Ce-doped TiO2) with dopant concentration of 9% (Ce) showed the highest photocatalytic activity for the degradation of the dye derivative Remazol Brilliant Blue R in an immersion well photochemical reactor with 500 W halogen linear lamp in the presence of atmospheric oxygen.


Sign in / Sign up

Export Citation Format

Share Document