protein mass spectrometry
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 30)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 11 (22) ◽  
pp. 10883
Author(s):  
Qinwen Liu ◽  
Ezaz Ahmed ◽  
K. M. Mohibul Kabir ◽  
Xiaojing Huang ◽  
Dan Xiao ◽  
...  

Electrospray ionisation (ESI) is renowned for its ability to ionise intact proteins for sensitive detection by mass spectrometry (MS). However, the use of a conventional direct current ESI voltage can result in the formation of relatively large initial droplet sizes, which can limit efficient ion desolvation and sensitivity. Here, pulsed nanoESI (nESI) MS using nanoscale emitters with inner diameters of ~250 nm is reported. In this approach, the nESI voltage is rapidly pulsed from 0 to ~1.5 kV with sub-nanosecond rise times, duty cycles from 10 to 90%, and repetition rates of 10 to 350 kHz. Using pulsed nESI, the performance of MS for the detection of intact proteins can be improved in terms of increased ion abundances and decreased noise. The absolute ion abundances and signal-to-noise levels of protonated ubiquitin, cytochrome C, myoglobin, and carbonic anhydrase II formed from standard denaturing solutions can be increased by up to 82% and 154% using an optimal repetition rate of ~200 kHz compared to conventional nESI-MS. Applying pulsed nESI-MS to a mixture of four proteins resulted in the signal for each protein increasing by up to 184% compared to the more conventional nESI-MS. For smaller ions (≤1032 m/z), the signal can also be increased by the use of high repetition rates (200–250 kHz), which is consistent with the enhanced performance depending more on general factors associated with the ESI process (e.g., smaller initial droplet sizes and reduced Coulombic repulsion in the spray plume) rather than analyte-specific effects (e.g., electrophoretic mobility). The enhanced sensitivity of pulsed nESI is anticipated to be beneficial for many different types of tandem mass spectrometry measurements.


2021 ◽  
Author(s):  
Gabriela Krivdova ◽  
Veronique Voisin ◽  
Erwin M Schoof ◽  
Sajid A Marhon ◽  
Alexander James Murison ◽  
...  

Gene expression profiling and proteome analysis of normal and malignant hematopoietic stem cells (HSC) point to shared core stemness properties. However, discordance between mRNA and protein signatures underscores an important role for post-transcriptional regulation by miRNAs in governing this critical nexus. Here, we identified miR-130a as a regulator of HSC self-renewal and differentiation. Enforced expression of miR-130a impaired B lymphoid differentiation and expanded long-term HSC. Integration of protein mass spectrometry and chimeric AGO2 eCLIP-seq identified TBL1XR1 as a primary miR-130a target, whose loss of function phenocopied miR-130a overexpression. Moreover, we found that miR-130a is highly expressed in t(8;21) AML where it is critical for maintaining the oncogenic molecular program mediated by AML1-ETO. Our study establishes that identification of the comprehensive miRNA targetome within primary cells enables discovery of novel genes and molecular networks underpinning stemness properties of normal and leukemic cells.


2021 ◽  
Author(s):  
Rafael D Melani ◽  
Benjamin J Des Soye ◽  
Jared O Kafader ◽  
Eleonora Forte ◽  
Michael Hollas ◽  
...  

Methods of antibody detection are used to assess exposure or immunity to a pathogen. Here, we present Ig-MS, a novel serological readout that captures the immunoglobulin (Ig) repertoire at molecular resolution, including entire variable regions in Ig light and heavy chains. Ig-MS uses recent advances in protein mass spectrometry (MS) for multi-parametric readout of antibodies, with new metrics like Ion Titer (IT) and Degree of Clonality (DoC) capturing the heterogeneity and relative abundance of individual clones without sequencing of B cells. We apply Ig-MS to plasma from subjects with severe & mild COVID-19, using the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 as the bait for antibody capture. Importantly, we report a new data type for human serology, with compatibility to any recombinant antigen to gauge our immune responses to vaccination, pathogens, or autoimmune disorders.


Author(s):  
Brian G Poll ◽  
Lihe Chen ◽  
Chung-Lin Chou ◽  
Viswanathan Raghuram ◽  
Mark A. Knepper

Kidney transport and other renal functions are regulated by multiple G protein-coupled receptors (GPCRs) expressed along the renal tubule. The rapid, recent appearance of comprehensive unbiased gene expression data in the various renal tubule segments, chiefly RNA-seq and protein mass spectrometry data, has provided a means of identifying patterns of GPCR expression along the renal tubule. To allow for comprehensive mapping, we first curated a comprehensive list of GPCRs in the genomes of mice, rats, and humans (https://hpcwebapps.cit.nih.gov/ESBL/Database/GPCRs/), using multiple online data sources. We used this list to mine segment-specific and cell-type specific expression data from RNA-seq studies in microdissected mouse tubule segments to identify GPCRs that are selectively expressed in discrete tubule segments. Comparisons of these mapped mouse GPCRs with other omics datasets as well as functional data from isolated perfused tubule and micro-puncture studies confirms patterns of expression for well-known receptors and identifies poorly studied GPCRs that are likely to play roles in regulation of renal tubule function. Thus, we provide data resources for GPCR expression across the renal tubule, highlighting both well-known GPCRs and understudied receptors in order to provide guidance for future studies.


2021 ◽  
Author(s):  
John Marshall ◽  
Peter Bowden ◽  
Jean Claude Schmit ◽  
Fay Betsou

Protein biomarkers offer major benefits for diagnosis and monitoring of disease processes. Recent advances in protein mass spectrometry make it feasible to use this very sensitive technology to detect and quantify proteins in blood. To explore the potential of blood biomarkers, we conducted a thorough review to evaluate the reliability of data in the literature and to determine the spectrum of proteins reported to exist in blood with a goal of creating a Federated Database of Blood Proteins (FDBP). A unique feature of our approach is the use of a SQL database for all of the peptide data; the power of the SQL database combined with standard informatic algorithms such as BLASTand the statistical analysis system (SAS) allowed the rapid annotation and analysis of the database without the need to create special programs to manage the data. Our mathematical analysis and review shows that in addition to the usual secreted proteins found in blood, there are many reports of intracellular proteins and good agreement on transcription factors, DNA remodelling factors in addition to cellular receptors and their signal transduction enzymes. Overall, we have catalogued about 12,130 proteins identified by at least one unique peptide, and of these 3858 have 3 or more peptide correlations. The FDBP with annotations should facilitate testing blood for specific disease biomarkers.


2021 ◽  
Author(s):  
John Marshall ◽  
Peter Bowden ◽  
Jean Claude Schmit ◽  
Fay Betsou

Protein biomarkers offer major benefits for diagnosis and monitoring of disease processes. Recent advances in protein mass spectrometry make it feasible to use this very sensitive technology to detect and quantify proteins in blood. To explore the potential of blood biomarkers, we conducted a thorough review to evaluate the reliability of data in the literature and to determine the spectrum of proteins reported to exist in blood with a goal of creating a Federated Database of Blood Proteins (FDBP). A unique feature of our approach is the use of a SQL database for all of the peptide data; the power of the SQL database combined with standard informatic algorithms such as BLASTand the statistical analysis system (SAS) allowed the rapid annotation and analysis of the database without the need to create special programs to manage the data. Our mathematical analysis and review shows that in addition to the usual secreted proteins found in blood, there are many reports of intracellular proteins and good agreement on transcription factors, DNA remodelling factors in addition to cellular receptors and their signal transduction enzymes. Overall, we have catalogued about 12,130 proteins identified by at least one unique peptide, and of these 3858 have 3 or more peptide correlations. The FDBP with annotations should facilitate testing blood for specific disease biomarkers.


Diagnostics ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 729
Author(s):  
Angelika V. Timofeeva ◽  
Ivan S. Fedorov ◽  
Alexander G. Brzhozovskiy ◽  
Anna E. Bugrova ◽  
Vitaliy V. Chagovets ◽  
...  

Despite the differences in the clinical manifestations of major obstetric syndromes, such as preeclampsia (PE) and intrauterine growth restriction (IUGR), their pathogenesis is based on the dysregulation of proliferation, differentiation, and invasion of cytotrophoblast cells that occur in the developing placenta, decidual endometrium, and myometrial parts of the spiral arteries. To understand the similarities and differences in the molecular mechanisms of PE and IUGR, samples of the placental bed and placental tissue were analyzed using protein mass spectrometry and the deep sequencing of small RNAs, followed by validation of the data obtained by quantitative RT-PCR in real time. A comparison of the transcriptome and proteomic profiles in the samples made it possible to conclude that the main changes in the molecular profile in IUGR occur in the placental bed, in contrast to PE, in which the majority of molecular changes occurs in the placenta. In placental bed samples, significant changes in the ratio of miRNA and its potential target gene expression levels were revealed, which were unique for IUGR (miR-30c-5p/VIM, miR-28-3p/VIM, miR-1-3p/ANXA2, miR-30c-5p/FBN1; miR-15b-5p/MYL6), unique for PE (miR-185-3p/FLNA), common for IUGR and PE (miR-30c-5p/YWHAZ and miR-654-3p/FGA), but all associated with abnormality in the hemostatic and vascular systems as well as with an inflammatory process at the fetal‒maternal interface.


2021 ◽  
Vol 32 (3) ◽  
pp. 636-647
Author(s):  
Nico P. M. Smit ◽  
L. Renee Ruhaak ◽  
Fred P. H. T. M. Romijn ◽  
Mervin M. Pieterse ◽  
Yuri E. M. van der Burgt ◽  
...  

2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii316-iii317
Author(s):  
Kendra K Maass ◽  
Mieke Roosen ◽  
Julia Benzel ◽  
Tatjana Wedig ◽  
Britta Statz ◽  
...  

Abstract Ependymal tumors (EPNs) account for ~10% of all pediatric brain tumors. Supratentorial EPN characterized by RELA fusions (ST-EPN-RELA) and posterior fossa EPN group A (PF-EPN-A) form the two most frequent molecular groups, both of which are associated with poor prognosis and for which only limited therapeutic options are available. Since pediatric EPNs have a relatively low mutational burden, identification and characterization of tumor-associated pathways and molecular processes is of critical importance to inform potential therapeutic targets. Previous transcriptional studies implicated aberrant vesicular pathways in ST-EPN-RELA, prompting further investigation into their putative role in EPN pathogenesis. To this aim, we isolated extracellular vesicles (EVs) of ST-EPN-RELA patient derived cell lines and performed protein mass spectrometry. The specific ST-EPN-RELA EV protein content resembles the parental cells as well as primary tumors. Promising candidates to be transferred by ST-EPN-RELA EVs but not control EVs were associated with unfolded protein response and endoplasmic reticulum stress. When uptaken by recipient cells of the tumor microenvironment, brain endothelial cells or microglia, ST-EPN-RELA EVs induced proliferation and had a chemoattractant effect towards the tumor. ST-EPN-RELA EVs stimulated angiogenesis of brain endothelial cells potentially by the transfer of ER stress proteins. Uptake of ST-EPN-RELA EVs by microglia changed their activation status indicating a tumor promoting function through EV transfer. Therefore, we hypothesize that vesicular pathways play an important role in the pathogenesis of pediatric ST-EPN-RELAs and that an improved understanding may promote new therapeutic opportunities.


Sign in / Sign up

Export Citation Format

Share Document