scholarly journals Solving the Time-Jerk Optimal Trajectory Planning Problem of a Robot Using Augmented Lagrange Constrained Particle Swarm Optimization

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Shaotian Lu ◽  
Jingdong Zhao ◽  
Li Jiang ◽  
Hong Liu

The problem of minimum time-jerk trajectory planning for a robot is discussed in this paper. The optimal objective function is composed of two segments along the trajectory, which are the proportional to the total execution time and the proportional to the integral of the squared jerk (which denotes the derivative of the acceleration). The augmented Lagrange constrained particle swarm optimization (ALCPSO) algorithm, which combines the constrained particle swarm optimization (CPSO) with the augmented Lagrange multiplier (ALM) method, is proposed to optimize the objective function. In this algorithm, falling into a local best value can be avoided because a new particle swarm is generated per initial procedure, and the best value gained from the former generation is saved and delivered to the next generation during the iterative search procedure to enable the best value to be found more easily and more quickly. Finally, the proposed algorithm is tested on a planar 3-degree-of-freedom (DOF) robot; the simulation results show that the algorithm is effective, offering a solution to the time-jerk optimal trajectory planning problem of a robot under nonlinear constraints.

Author(s):  
Yiping Meng ◽  
Yiming Sun ◽  
Wen-shao Chang

AbstractIn this paper, a methodology for path distance and time synthetic optimal trajectory planning is described in order to improve the work efficiency of a robotic chainsaw when dealing with cutting complex timber joints. To demonstrate this approach one specific complicated timber joint is used as an example. The trajectory is interpolated in the joint space by using a quantic polynomial function which enables the trajectory to be constrained in the kinematic limits of velocity, acceleration, and jerk. The particle swarm optimization (PSO) is applied to optimize the path of all cutting surfaces of the timber joint in operating space to achieve the shortest path. Based on the optimal path, an adaptive genetic algorithm (AGA) is used to optimize the time interval of interpolation points of every joint to realize the time-optimal trajectory. The results of the simulation show that the PSO method shortens the distance of the trajectory and that the AGA algorithm reduces time intervals and helps to obtain smooth trajectories, validating the effectiveness and practicability of the two proposed methodology on path and time optimization for 6-DOF robots when used in cutting tasks.


2015 ◽  
Vol 785 ◽  
pp. 495-499
Author(s):  
Siti Amely Jumaat ◽  
Ismail Musirin

The paper presents a comparison of performance Static Var Compensator (SVC) and Thyristor Controlled Series Compensator (TCSC) with objective function to minimize the transmission loss, improve the voltage and monitoring the cost of installation. Simulation performed on standard IEEE 30-Bus RTS and indicated that EPSO a feasible to achieve the objective function.


Author(s):  
Kun-Yung Chen ◽  
Te-Wen Tu

Abstract An inverse methodology is proposed to estimate a time-varying heat transfer coefficient (HTC) for a hollow cylinder with time-dependent boundary conditions of different kinds on inner and outer surfaces. The temperatures at both the inner surface and the interior domain are measured for the hollow cylinder, while the time history of HTC of the outer surface will be inversely determined. This work first expressed the unknown function of HTC in a general form with unknown coefficients, and then regarded these unknown coefficients as the estimated parameters which can be randomly searched and found by the self-learning particle swarm optimization (SLPSO) method. The objective function which wants to be minimized was found with the absolute errors between the measured and estimated temperatures at several measurement times. If the objective function converges toward the null, the inverse solution of the estimated HTC will be found eventually. From numerical experiments, when the function of HTC with exponential type is performed, the unknown coefficients of the HTC function can be accurately estimated. On the contrary, when the function of HTC with a general type is conducted, the unknown coefficients of HTC are poorly estimated. However, the estimated coefficients of an HTC function with the general type can be regarded as the equivalent coefficients for the real function of HTC.


Sign in / Sign up

Export Citation Format

Share Document