scholarly journals Effect of Internal Heat Source on the Onset of Double-Diffusive Convection in a Rotating Nanofluid Layer with Feedback Control Strategy

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
I. K. Khalid ◽  
N. F. M. Mokhtar ◽  
I. Hashim ◽  
Z. B. Ibrahim ◽  
S. S. A. Gani

A linear stability analysis has been carried out to examine the effect of internal heat source on the onset of Rayleigh–Bénard convection in a rotating nanofluid layer with double diffusive coefficients, namely, Soret and Dufour, in the presence of feedback control. The system is heated from below and the model used for the nanofluid layer incorporates the effects of thermophoresis and Brownian motion. Three types of bounding systems of the model have been considered which are as follows: both the lower and upper bounding surfaces are free, the lower is rigid and the upper is free, and both of them are rigid. The eigenvalue equations of the perturbed state were obtained from a normal mode analysis and solved using the Galerkin method. It is found that the effect of internal heat source and Soret parameter destabilizes the nanofluid layer system while increasing the Coriolis force, feedback control, and Dufour parameter helps to postpone the onset of convection. Elevating the modified density ratio hastens the instability in the system and there is no significant effect of modified particle density in a nanofluid system.

2014 ◽  
Vol 92 (5) ◽  
pp. 425-434 ◽  
Author(s):  
Sunita Deswal ◽  
Renu Yadav

The dynamical interactions caused by a line heat source moving inside a homogeneous isotropic thermo-microstretch viscoelastic half space, whose surface is subjected to a thermal load, are investigated. The formulation is in the context of generalized thermoelasticity theories proposed by Lord and Shulman (J. Mech. Phys. Solid, 15, 299 (1967)) and Green and Lindsay (Thermoelasticity, J. Elasticity, 2, 1 (1972)). The surface is assumed to be traction free. The solutions in terms of displacement components, mechanical stresses, temperature, couple stress, and microstress distribution are procured by employing the normal mode analysis. The numerical estimates of the considered variables are obtained for an aluminium–epoxy material. The results obtained are demonstrated graphically to show the effect of moving heat source and viscosity on the displacement, stresses, and temperature distribution.


2015 ◽  
Vol 20 (4) ◽  
pp. 717-731
Author(s):  
P. Ailawalia ◽  
S.K. Sachdeva ◽  
D.S. Pathania

Abstract The purpose of this paper is to study the two dimensional deformation due to an internal heat source in a thermoelastic microelongated solid. A mechanical force is applied along an overlaying elastic layer of thickness h. The normal mode analysis has been applied to obtain the exact expressions for the displacement component, force stress, temperature distribution and microelongation. The effect of the internal heat source on the displacement component, force stress, temperature distribution and microelongation has been depicted graphically for Green-Lindsay (GL) theory of thermoelasticity.


2018 ◽  
Vol 23 (1) ◽  
pp. 5-21 ◽  
Author(s):  
P. Ailawalia ◽  
S. Budhiraja ◽  
J. Singh

AbstractThe purpose of this paper is to study the two dimensional deformation in a generalized thermoelastic medium with microtemperatures having an internal heat source subjected to a mechanical force. The force is acting along the interface of generalized thermoelastic half space and generalized thermoelastic half space with microtemperatures having an internal heat source. The normal mode analysis has been applied to obtain the exact expressions for the considered variables. The effect of internal heat source and microtemperatures on the above components has been depicted graphically.


Sign in / Sign up

Export Citation Format

Share Document