scholarly journals Soluble Epoxide Hydrolase Inhibitor and 14,15-Epoxyeicosatrienoic Acid-Facilitated Long-Term Potentiation through cAMP and CaMKII in the Hippocampus

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Han-Fang Wu ◽  
Yi-Ju Chen ◽  
Su-Zhen Wu ◽  
Chi-Wei Lee ◽  
I-Tuan Chen ◽  
...  

Epoxyeicosatrienoic acids (EETs) are derived from arachidonic acid and metabolized by soluble epoxide hydrolase (sEH). The role of EETs in synaptic function in the central nervous system is still largely unknown. We found that pharmacological inhibition of sEH to stabilize endogenous EETs and exogenous 14,15-EET significantly increased the field excitatory postsynaptic potential (fEPSP) response in the CA1 area of the hippocampus, while additionally enhancing high-frequency stimulation- (HFS-) induced long-term potentiation (LTP) and forskolin- (FSK-) induced LTP. sEH inhibitor (sEHI) N-[1-(oxopropyl)-4-piperidinyl]-N’-[4-(trifluoromethoxy) phenyl)-urea (TPPU) and exogenous 14,15-EET increased HFS-LTP, which could be blocked by an N-methyl-D-aspartate (NMDA) receptor subunit NR2B antagonist. TPPU- or 14,15-EET-facilitated FSK-mediated LTP can be potentiated by an A1 adenosine receptor antagonist and a phosphodiesterase inhibitor, but is prevented by a cAMP-dependent protein kinase (PKA) inhibitor. sEHI and 14,15-EET upregulated the activation of extracellular signal-regulated kinases (ERKs) and Ca2+/calmodulin- (CaM-) dependent protein kinase II (CaMKII). Phosphorylation of synaptic receptors NR2B andα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluR1 was increased by TPPU and 14,15-EET administration. These results indicated that EETs increased NMDAR- and FSK-mediated synaptic potentiation via the AC-cAMP-PKA signaling cascade and upregulated the ERKs and CaMKII, resulting in increased phosphorylation of NR2B and GluR1 in the hippocampus.

2005 ◽  
Vol 33 (6) ◽  
pp. 1354-1356 ◽  
Author(s):  
J. Boehm ◽  
R. Malinow

A widely studied example of vertebrate plasticity is LTP (long-term potentiation), the persistent synaptic enhancement that follows a brief period of coinciding pre- and post-synaptic activity. During LTP, different kinases, including CaMKII (calcium/calmodulin-dependent protein kinase II) and protein kinase A, become activated and play critical roles in induction and maintenance of enhanced transmission. Biochemical analyses have revealed several regulated phosphorylation sites in the AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor subunits, GluR1 and GluR4. The regulated insertion of these receptors is a key event in the induction of LTP. Here, we discuss the phosphorylation of GluR1 and GluR4 and its role in receptor delivery and neuronal plasticity.


2004 ◽  
Vol 92 (5) ◽  
pp. 2853-2858 ◽  
Author(s):  
Danyun Zhao ◽  
Joseph B. Watson ◽  
Cui-Wei Xie

Accumulation of amyloid β-peptides (Aβ) in the brain has been linked with memory loss in Alzheimer's disease and its animal models. However, the synaptic mechanism by which Aβ causes memory deficits remains unclear. We previously showed that acute application of Aβ inhibited long-term potentiation (LTP) in the hippocampal perforant path via activation of calcineurin, a Ca2+-dependent protein phosphatase. This study examined whether Aβ could also inhibit Ca2+/calmodulin dependent protein kinase II (CaMKII), further disrupting the dynamic balance between protein kinase and phosphatase during synaptic plasticity. Immunoblot analysis was conducted to measure autophosphorylation of CaMKII at Thr286 and phosphorylation of the GluR1 subunit of AMPA receptors in single rat hippocampal slices. A high-frequency tetanus applied to the perforant path significantly increased CaMKII autophosphorylation and subsequent phosphorylation of GluR1 at Ser831, a CaMKII-dependent site, in the dentate area. Acute application of Aβ1–42 inhibited dentate LTP and associated phosphorylation processes, but was without effect on phosphorylation of GluR1 at Ser845, a protein kinase A-dependent site. These results suggest that activity-dependent CaMKII autophosphorylation and AMPA receptor phosphorylation are essential for dentate LTP. Disruption of such mechanisms could directly contribute to Aβ-induced deficits in hippocampal synaptic plasticity and memory.


Sign in / Sign up

Export Citation Format

Share Document