scholarly journals End-to-End Data Rate Performance of Decode-and-Forward Relaying with Different Resource Allocation Schemes

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Inam Ullah ◽  
Alexis Dowhuszko ◽  
Zhong Zheng ◽  
David González González ◽  
Jyri Hämäläinen

This paper studies the end-to-end (e2e) data rate of dual-hop Decode-and-Forward (DF) infrastructure relaying under different resource allocation schemes. In this context, we first provide a comparative analysis of the optimal resource allocation scheme with respect to several other approaches in order to provide insights into the system behavior and show the benefits of each alternative. Then, assuming the optimal resource allocation, a closed form expression for the distribution of the mean and outage data rates is derived. It turns out that the corresponding mean e2e data rate formula attains an expression in terms of an integral that does not admit a closed form solution. Therefore, a tight lower bound formula for the mean e2e data rate is presented. Results can be used to select the most convenient resource allocation scheme and perform link dimensioning in the network planning phase, showing the explicit relationships that exist between component link bandwidths, SNR values, and mean data rate.

2021 ◽  
Author(s):  
Mohammad S. Yazdi

Smart grid is a utility network, with advanced information and communications technologies for improved control, efficiency, reliability and safety in electric power distribution and management. Smart grid communication network consists of three interconnected communication networks: home area network (HAN), neighborhood area network (NAN), and wide area network (WAN). Our thesis is focused on NAN. The information flow in smart grid communication networks has different Quality of Service (QoS) requirements in terms of packet loss rate, throughput, and latency. By deploying QoS mechanisms, we can get the real time feedbacks which can be used to supply electricity based on need, thus reducing the wastage of electricity. First, we conducted Opnet simulations for NAN. We evaluated two technologies, Zigbee and wireless local area network (WLAN), for NAN. The simulation results demonstrate that latency can be reduced for the data flow with a higher priority with an appropriate QoS mechanism. Next, we proposed an optimal resource allocation scheme to reduce delay and provide differentiated services, in terms of latency, to different classes of traffic in the NAN. The problem is formulated into a linear programming (LP) problem, which can be solved efficiently. The simulation results and comparison demonstrates that the proposed resource allocation scheme can provide overall lower latency of the various data flows. Our method also lowers the delay of the data flow with a higher priority.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yifan Hu ◽  
Mingang Liu ◽  
Yizhi Feng

In this paper, we study the resource allocation for simultaneous wireless information and power transfer (SWIPT) systems with the nonlinear energy harvesting (EH) model. A simple optimal resource allocation scheme based on the time slot switching is proposed to maximize the average achievable rate for the SWIPT systems. The optimal resource allocation is formulated as a nonconvex optimization problem, which is the combination of a series of nonconvex problems due to the binary feature of the time slot-switching ratio. The optimal problem is then solved by using the time-sharing strong duality theorem and Lagrange dual method. It is found that with the proposed optimal resource allocation scheme, the receiver should perform EH in the region of medium signal-to-noise ratio (SNR), whereas switching to information decoding (ID) is performed when the SNR is larger or smaller. The proposed resource allocation scheme is compared with the traditional time switching (TS) resource allocation scheme for the SWIPT systems with the nonlinear EH model. Numerical results show that the proposed resource allocation scheme significantly improves the system performance in energy efficiency.


2021 ◽  
Author(s):  
Mohammad S. Yazdi

Smart grid is a utility network, with advanced information and communications technologies for improved control, efficiency, reliability and safety in electric power distribution and management. Smart grid communication network consists of three interconnected communication networks: home area network (HAN), neighborhood area network (NAN), and wide area network (WAN). Our thesis is focused on NAN. The information flow in smart grid communication networks has different Quality of Service (QoS) requirements in terms of packet loss rate, throughput, and latency. By deploying QoS mechanisms, we can get the real time feedbacks which can be used to supply electricity based on need, thus reducing the wastage of electricity. First, we conducted Opnet simulations for NAN. We evaluated two technologies, Zigbee and wireless local area network (WLAN), for NAN. The simulation results demonstrate that latency can be reduced for the data flow with a higher priority with an appropriate QoS mechanism. Next, we proposed an optimal resource allocation scheme to reduce delay and provide differentiated services, in terms of latency, to different classes of traffic in the NAN. The problem is formulated into a linear programming (LP) problem, which can be solved efficiently. The simulation results and comparison demonstrates that the proposed resource allocation scheme can provide overall lower latency of the various data flows. Our method also lowers the delay of the data flow with a higher priority.


Sign in / Sign up

Export Citation Format

Share Document