scholarly journals Curve and Surface Smoothing Using a Modified Cahn-Hilliard Equation

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yongho Choi ◽  
Darea Jeong ◽  
Junseok Kim

We present a new method using the modified Cahn-Hilliard (CH) equation for smoothing piecewise linear shapes of two- and three-dimensional objects. The CH equation has good smoothing dynamics and it is coupled with a fidelity term which keeps the original given data; that is, it does not produce significant shrinkage. The modified CH equation is discretized using a linearly stable splitting scheme in time and the resulting scheme is solved by using a Fourier spectral method. We present computational results for both curve and surface smoothing problems. The computational results demonstrate that the proposed algorithm is fast and efficient.
















Meccanica ◽  
2021 ◽  
Author(s):  
Fernando P. Duda ◽  
Adel F. Sarmiento ◽  
Eliot Fried

AbstractWe develop a constrained theory for constituent migration in bodies with microstructure described by a scalar phase field. The distinguishing features of the theory stem from a systematic treatment and characterization of the reactions needed to maintain the internal constraint given by the coincidence of the mass fraction and the phase field. We also develop boundary conditions for situations in which the interface between the body and its environment is structureless and cannot support constituent transport. In addition to yielding a new derivation of the Cahn–Hilliard equation, the theory affords an interpretation of that equation as a limiting variant of an Allen–Cahn type diffusion system arising from the unconstrained theory obtained by considering the mass fraction and the phase field as independent quantities. We corroborate that interpretation with three-dimensional numerical simulations of a recently proposed benchmark problem.



Sign in / Sign up

Export Citation Format

Share Document