coupled diffusion
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 35)

H-INDEX

29
(FIVE YEARS 4)

2022 ◽  
pp. 104217
Author(s):  
Hui-Jie Cheng ◽  
Xian-Cheng Zhang ◽  
Yun-Fei Jia ◽  
Fuqian Yang ◽  
Shan-Tung Tu

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yiqun Wang ◽  
Changpeng He ◽  
Zhenjiang Li

This paper uses the web live broadcast and on-demand platform based on the B/S architecture as the application side and designs a video image forensic system that can meet multiple police types and multiple application scenarios. The system uses mobile phones as the video image capture terminal to solve the problem of rapid response and concealment and uses 5G communication technology as the transmission medium to solve the problem of device mobility and link maintenance. The problem of diversification of the use and application modes of multiple police types is solved; the video image evidence is managed in a centralized storage, audit, and export method, and the security and authenticity of the evidence are solved. While the system realizes a series of functions such as the collection, transmission, storage, and application of video image evidence, it also realizes the application-side video image live broadcast function according to actual work needs and solves the large-scale case command and decision-making problem that has been plagued by public security organs. In order to remove the noise in the public security forensic images and to smooth the noise while retaining the details of the image, this paper proposes a denoising algorithm based on the two-way coupling diffusion equation. By improving the second-order partial differential equation, a new diffusion function with better diffusion effect than the original model is constructed. We combined the adaptive edge threshold and stop criterion to establish a new denoising algorithm model, which can get better denoising results. When the noise level is low, the PSNR value and SSIM value of several denoising methods are relatively ideal, and the result is at a higher level, the denoising picture effect is better, and there is no obvious incomplete noise removal or detail problems. As the noise level increases, the denoising results will gradually decrease, and the effects will also vary to different degrees. When the noise intensity increases, visually, it can be clearly seen that the two-way coupled diffusion equation and DnCNN have better denoising effects. When the noise level is high, the two-way coupled diffusion equation network is used to use the clear image and the denoised image for indistinguishable calculation. The method in this paper almost retains all the texture details in the clear image, and there are almost no artifacts and images. On the other hand, the color of the image after denoising by the method in this paper is more vivid, and it is closer to the target picture in terms of picture definition and tone, the denoising effect is ideal, and the generated image has a higher degree of restoration. Compared with the residual GAN, the two-way coupling diffusion equation network converges faster and the network performance is improved.


2021 ◽  
Vol 22 (24) ◽  
pp. 13266
Author(s):  
Sónia I. G. Fangaia ◽  
Pedro M. G. Nicolau ◽  
Fernando A. D. R. A. Guerra ◽  
M. Melia Rodrigo ◽  
Gianluca Utzeri ◽  
...  

Metal ions such as cobalt (II) and chromium (III) might be present in the oral cavity, as a consequence of the corrosion of Co-Cr dental alloys. The diffusion of such metal ions into the organism, carried by saliva, can cause health problems as a consequence of their toxicity, enhanced by a cumulative effect in the body. The effect of the chlorhexidine digluconate, which is commonly used in mouthwash formulations, on the transport of these salts is evaluated in this paper by using the Taylor dispersion technique, which will allow an assessment of how the presence of chlorhexidine digluconate (either in aqueous solution or in a commercial formulation) may affect the diffusion of metal ions. The ternary mutual diffusion coefficients of metal ions (Co and Cr) in the presence of chlorhexidine digluconate, in an artificial saliva media, were measured. Significant coupled diffusion of CoCl2 (and CrCl3) and chlorhexidine digluconate is observed by analysis of the non-zero values of the cross-diffusion coefficients, D12 and D21. The observed interactions between metal ions and chlorhexidine digluconate suggest that the latter might be considered as an advantageous therapeutic agent, once they contribute to the reduction of the concentration of those ions inside the mouth.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Irina Shalimova ◽  
Karl K. Sabelfeld

Abstract We further develop in this study the Random Walk on Spheres (RWS) stochastic algorithm for solving systems of coupled diffusion-recombination equations first suggested in our recent article [K. Sabelfeld, First passage Monte Carlo algorithms for solving coupled systems of diffusion–reaction equations, Appl. Math. Lett. 88 2019, 141–148]. The random walk on spheres process mimics the isotropic diffusion of two types of particles which may recombine to each other. Our motivation comes from the transport problems of free and bound exciton recombination. The algorithm is based on tracking the trajectories of the diffusing particles exactly in accordance with the probabilistic distributions derived from the explicit representation of the relevant Green functions for balls and spheres. Therefore, the method is mesh free both in space and time. In this paper we implement the RWS algorithm for solving the diffusion-recombination problems both in a steady-state and transient settings. Simulations are compared against the exact solutions. We show also how the RWS algorithm can be applied to calculate exciton flux to the boundary which provides the electron beam-induced current, the concentration of the survived excitons, and the cathodoluminescence intensity which are all integral characteristics of the solution to diffusion-recombination problem.


Author(s):  
Ana C.F. Ribeiro ◽  
Lenka Musilová ◽  
Aleš Mráček ◽  
Ana M.T.D.P.V. Cabral ◽  
Maria Ana Santos ◽  
...  

Author(s):  
Theodore Zirkle ◽  
Luke Costello ◽  
Ting Zhu ◽  
David L. McDowell

Abstract The diffusion of hydrogen in metals is of interest due to the deleterious influence of hydrogen on material ductility and fracture resistance. It is becoming increasingly clear that hydrogen transport couples significantly with dislocation activity. In this work, we employ a coupled diffusion-crystal plasticity model to incorporate hydrogen transport associated with dislocation sweeping and pipe diffusion in addition to standard lattice diffusion. Moreover, we consider generation of vacancies via plastic deformation and stabilization of vacancies via trapping of hydrogen. The proposed hydrogen transport model is implemented in a physically-based crystal viscoplasticity framework to model the interaction of dislocation substructure and hydrogen migration. In this study, focus is placed on hydrogen transport and trapping within the intense deformation field of a crack tip plastic zone. We discuss the implications of the model results in terms of constitutive relations that incorporate hydrogen effects on crack tip field behavior and enable exploration of hydrogen embrittlement mechanisms.


Meccanica ◽  
2021 ◽  
Author(s):  
Fernando P. Duda ◽  
Adel F. Sarmiento ◽  
Eliot Fried

AbstractWe develop a constrained theory for constituent migration in bodies with microstructure described by a scalar phase field. The distinguishing features of the theory stem from a systematic treatment and characterization of the reactions needed to maintain the internal constraint given by the coincidence of the mass fraction and the phase field. We also develop boundary conditions for situations in which the interface between the body and its environment is structureless and cannot support constituent transport. In addition to yielding a new derivation of the Cahn–Hilliard equation, the theory affords an interpretation of that equation as a limiting variant of an Allen–Cahn type diffusion system arising from the unconstrained theory obtained by considering the mass fraction and the phase field as independent quantities. We corroborate that interpretation with three-dimensional numerical simulations of a recently proposed benchmark problem.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
E. Toijer ◽  
L. Messina ◽  
C. Domain ◽  
J. Vidal ◽  
C. S. Becquart ◽  
...  

2021 ◽  
Vol 146 ◽  
pp. 104211
Author(s):  
Virginia von Streng ◽  
Rami Abi-Akl ◽  
Bianca Giovanardi ◽  
Tal Cohen

Sign in / Sign up

Export Citation Format

Share Document