scholarly journals Generalized Euler-Lagrange Equations for Fuzzy Fractional Variational Problems under gH-Atangana-Baleanu Differentiability

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Jianke Zhang ◽  
Gaofeng Wang ◽  
Xiaobin Zhi ◽  
Chang Zhou

We study in this paper the Atangana-Baleanu fractional derivative of fuzzy functions based on the generalized Hukuhara difference. Under the condition of gH-Atangana-Baleanu fractional differentiability, we prove the generalized necessary and sufficient optimality conditions for problems of the fuzzy fractional calculus of variations with a Lagrange function. The new kernel of gH-Atangana-Baleanu fractional derivative has no singularity and no locality, which was not precisely illustrated in the previous definitions.

Author(s):  
Agnieszka Malinowska ◽  
Delfim Torres

AbstractWe generalize the fractional Caputo derivative to the fractional derivative C D γα,β, which is a convex combination of the left Caputo fractional derivative of order α and the right Caputo fractional derivative of order β. The fractional variational problems under our consideration are formulated in terms of C D γα,β. The Euler-Lagrange equations for the basic and isoperimetric problems, as well as transversality conditions, are proved.


2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Jun Jiang ◽  
Yuqiang Feng ◽  
Shougui Li

In this paper, the necessary and sufficient conditions of optimality for variational problems with Caputo partial fractional derivative are established. Fractional Euler-Lagrange equations are obtained. The Legendre condition and Noether’s theorem are also presented.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1665
Author(s):  
Fátima Cruz ◽  
Ricardo Almeida ◽  
Natália Martins

In this work, we study variational problems with time delay and higher-order distributed-order fractional derivatives dealing with a new fractional operator. This fractional derivative combines two known operators: distributed-order derivatives and derivatives with respect to another function. The main results of this paper are necessary and sufficient optimality conditions for different types of variational problems. Since we are dealing with generalized fractional derivatives, from this work, some well-known results can be obtained as particular cases.


2012 ◽  
Vol 2012 ◽  
pp. 1-24 ◽  
Author(s):  
Tatiana Odzijewicz ◽  
Agnieszka B. Malinowska ◽  
Delfim F. M. Torres

We study fractional variational problems in terms of a generalized fractional integral with Lagrangians depending on classical derivatives, generalized fractional integrals and derivatives. We obtain necessary optimality conditions for the basic and isoperimetric problems, as well as natural boundary conditions for free-boundary value problems. The fractional action-like variational approach (FALVA) is extended and some applications to physics discussed.


2016 ◽  
Vol 8 (3) ◽  
pp. 60 ◽  
Author(s):  
Eyad Hasan Hasan

<p class="1Body">In this paper, we examined the fractional Euler-Lagrange equations for Holonomic constrained systems. The Euler-Lagrange equations are derived using the fractional variational problem of Lagrange. In addition, we achieved that the classical results were obtained are agreement when fractional derivatives are replaced with the integer order derivatives. Two physical examples are discussed to demonstrate the formalism.</p>


2021 ◽  
Vol 5 (1) ◽  
pp. 24
Author(s):  
Ricardo Almeida ◽  
Natália Martins

In this paper, we present a new fractional variational problem where the Lagrangian depends not only on the independent variable, an unknown function and its left- and right-sided Caputo fractional derivatives with respect to another function, but also on the endpoint conditions and a free parameter. The main results of this paper are necessary and sufficient optimality conditions for variational problems with or without isoperimetric and holonomic restrictions. Our results not only provide a generalization to previous results but also give new contributions in fractional variational calculus. Finally, we present some examples to illustrate our results.


Sign in / Sign up

Export Citation Format

Share Document