scholarly journals A Mathematical Programming Model to Determine Objective Weights for the Interval Extension of TOPSIS

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Hai Shen ◽  
Lingyu Hu ◽  
Kin Keung Lai

Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) method has been extended in previous literature to consider the situation with interval input data. However, the weights associated with criteria are still subjectively assigned by decision makers. This paper develops a mathematical programming model to determine objective weights for the implementation of interval extension of TOPSIS. Our method not only takes into account the optimization of interval-valued Multiple Criteria Decision Making (MCDM) problems, but also determines the weights only based upon the data set itself. An illustrative example is performed to compare our results with that of existing literature.

2015 ◽  
Vol 21 (4) ◽  
pp. 596-625 ◽  
Author(s):  
M. M. E. ALEMANY ◽  
A. A. ◽  
Andrés BOZA ◽  
Vicente S. FUERTES-MIQUEL

In ceramic companies, uncertainty in the tone and gage obtained in first quality units of the same finished good (FG) entails frequent discrepancies between planned homogeneous quantities and real ones. This fact can lead to a shortage situation in which certain previously committed customer orders cannot be served because there are not enough homogeneous units of a specific FG (i.e., with the same tone and gage). In this paper, a Model-Driven Decision Support System (DSS) is proposed to reassign the actual homogeneous stock and the planned homogeneous sublots to already committed orders under uncertainty by means of a mathematical programming model (SP-Model). The DSS functionalities enable ceramic decision makers to generate different solutions by changing model options. Uncertainty in the planned homogeneous quantities, and any other type of uncertainty, is managed via scenarios. The robustness of each solution is tested in planned and real situations with another DSS functionality based on another mathematical programming model (ASP-Model). With these DSS features, the ceramic decision maker can choose in a friendly fashion the orders to be served with the current homogeneous stock and the future uncertainty homogeneous supply to better achieve a balance between the maximisation of multiple objectives and robustness.


2015 ◽  
Vol 21 (5) ◽  
pp. 705-719 ◽  
Author(s):  
Guangxu LI ◽  
Gang Gang KOU ◽  
Yi PENG

The paper proposes a dynamic fuzzy multiple criteria decision making (DFMCDM) method. The method considers the integrated weight of the decision makers with the subjective and objective preference and the effect of time weight. In the proposed method, a mathematical programming model is used to determine the integrated weight, and a basic unit-interval monotonic (BUM) function based approach is used to calculate the time weight. In addition, a distance measure of membership function is introduced to effectively measure the degree of difference between the alternatives in the Fuzzy Technique for Order Preference by Similarity to Ideal Solution (FTOPSIS). Finally, a numerical example is introduced to illustrate the proposed method.


2014 ◽  
Vol 13 (01) ◽  
pp. 101-135 ◽  
Author(s):  
MUKESH KUMAR MEHLAWAT ◽  
PANKAJ GUPTA

In this paper, we develop a hybrid bi-objective credibility-based fuzzy mathematical programming model for portfolio selection under fuzzy environment. To deal with imprecise parameters, we use a hybrid credibility-based approach that combines the expected value and chance constrained programming techniques. The model simultaneously maximizes the portfolio return and minimizes the portfolio risk. We also consider an additional important criterion, namely, portfolio liquidity as a constraint in the model to make it better suited for practical applications. The proposed fuzzy optimization model is solved using a two-phase approach. An empirical study is included to demonstrate applicability of the proposed model and the solution approach in real-world applications of portfolio selection.


2012 ◽  
Vol 52 (No. 2) ◽  
pp. 51-66 ◽  
Author(s):  
P. Havlík ◽  
F. Jacquet ◽  
Boisson J-M ◽  
S. Hejduk ◽  
P. Veselý

BEGRAB_PRO.1 – a mathematical programming model for BEef and GRAssland Biodiversity PRoduction Optimisation – elaborated for analysis of organic suckler cow farms in the Protected Landscape Area White Carpathians, the Czech Republic, is presented and applied to the analysis of jointness between several environmental goods. In this way, the paper complements recent studies on jointness between commodities and non-commodities. If these goods are joint in production, agri-environmental payments must be carefully designed because they do not influence only production of the environmental good they are intended for but also the production of other environmental goods. If jointness is negative, any increase in the payment for an environmental good leads to a decrease in production of other environmental goods.


Sign in / Sign up

Export Citation Format

Share Document