scholarly journals An Antenna Array Sidelobe Level Reduction Approach through Invasive Weed Optimization

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Geng Sun ◽  
Yanheng Liu ◽  
Han Li ◽  
Shuang Liang ◽  
Aimin Wang ◽  
...  

The problems of synthesizing the beam patterns of the linear antenna array (LAA) and the circular antenna array (CAA) are addressed. First, an optimization problem is formulated for reducing the maximum sidelobe level (SLL) of the beam patterns. Then, the formulated problem is solved by using the invasive weed optimization (IWO) algorithm. Various simulations are performed to evaluate the effectiveness of the IWO algorithm for the synthesis of the beam patterns of the LAA and the CAA. The results show that IWO has a better performance in terms of the accuracy, the convergence rate, and the stability compared with other algorithms for the SLL reductions. Moreover, the electromagnetic simulation results also show that IWO achieves the best performance for the beam pattern synthesis of the antenna arrays in practical conditions.

Nowadays, low-side lobe antenna arrays are used in many communications systems such as satellite, cellular, radar and wireless communications. The antenna array with low side lobe rates should be designed to avoid noisy contact. A new stochastic approach to synthesize a linear antenna array to suppress normal distributed invasive weed optimization (NDIWO) is proposed in this paper synthesize a linear antenna array to suppress the side lobe levels. NDIWO is applied for optimization of the positions of the antenna elements. A 28-element linear array is designed and synthesized by using the proposed and other popular evolutionary algorithms. The acquired radiation designs are gathered with the calculations like particle swarm optimization (PSO) and differential evolution (DE). The numerical results illustrate that the NDIWO optimized antenna array performs superior over PSO and DE optimized arrays in terms of low PSLL and convergence properties.


2012 ◽  
Vol 4 (6) ◽  
pp. 635-646
Author(s):  
Ahmed Najah Jabbar ◽  
Ali Shaban Hasooni ◽  
Muthana Khallil Ibrahim

In this study, we present the implementation of invasive weed optimization (IWO) in the maximization of main-lobe to side-lobe level for the non-uniform planar antenna array. The antenna arrays investigated in this study are generated using the chaos game algorithm (CGA) and shaped into selected fractal geometries chosen on the basis of their interesting performance. This CGA is picked out in order to overcome the limitations found in the fractal arrays. All the attained results are compared with the results produced by a well-known optimization algorithm that is the particle swarm optimization (PSO). In all the optimized arrays, IWO shows superior optimization results compared with PSO.


2014 ◽  
Vol 7 (2) ◽  
pp. 161-166 ◽  
Author(s):  
Nihad Dib ◽  
Ashraf Sharaqa

This paper presents the design of non-uniform concentric circular antenna arrays (CCAAs) of isotropic radiators with optimum sidelobe level (SLL) reduction. The biogeography-based optimization (BBO) method is used to determine an optimum set of excitation amplitudes that provide a radiation pattern with optimum SLL reduction with the constraint of a fixed major lobe beamwidth. The BBO method represents a new global evolutionary algorithm for optimization problems in electromagnetics. It is shown that the BBO results provide an SLL reduction that is comparable to that obtained using well-known algorithms, such as the particle swarm optimization (PSO), genetic algorithm (GA), and evolutionary programming (EP). Moreover, BBO results are compared with those obtained using the Matlab function Fmincon which uses a sequential quadratic programming (SQP) method. The comparison shows that the design of non-uniformly excited CCAAs using the SQP method provides a SLL reduction that is better than that obtained using global stochastic optimization methods, indicating that global optimization techniques might not really be needed in this problem.


Sign in / Sign up

Export Citation Format

Share Document