circular antenna array
Recently Published Documents


TOTAL DOCUMENTS

220
(FIVE YEARS 57)

H-INDEX

14
(FIVE YEARS 2)

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 19
Author(s):  
Chien-Ching Chiu ◽  
Hung-Yu Wu ◽  
Wei Chien ◽  
Yu-Ting Cheng ◽  
Eng Hock Lim

In this paper, three different deployment antenna arrays with circular, triangular and rectangular shapes were used to optimize the simultaneous wireless information and power transfer (SWIPT) system for the Internet of Things (IoT). Ray-tracing was employed to channel the model for a real environment. Self-adaptive dynamic differential evolution (SADDE) was used to optimize the harvesting power ratio with bit error rate constrained by the two different resolutions of feed length (high resolution and low resolution). Numerical results show that those three antenna arrays can achieve the goal for information quality in both resolutions. The harvesting power ratio for the circular array is the best and the harvesting power ratio for the rectangular array is the worst. The harvesting power ratio for the low-resolution case is 25% lower than the high-resolution case. However, the circular antenna array is the best deployment in those three different arrays for both high and low resolutions.


2021 ◽  
Vol 11 (13) ◽  
pp. 5972
Author(s):  
Seonho Lim ◽  
Young Joong Yoon

In this paper, effective electromagnetic (EM) focusing achieved with a phase compensation technique for microwave hyperthermia systems is proposed. To treat tumor cells positioned deep inside a human female breast, EM energy must be properly focused on the target area. A circular antenna array for microwave hyperthermia allows EM energy to concentrate on a specific target inside the breast tumor. Depending on the cancerous cell conditions in the breast, the input phases of each antenna are calculated for single and multiple tumor cell locations. In the case of multifocal breast cancer, sub-array beam focusing via the phase compensation technique is presented to enhance the ability of EM energy to concentrate on multiple targets while minimizing damage to normal cells. To demonstrate the thermal treatment effects on single and multiple tumor locations, the accumulation of the specific absorption rate (SAR) parameter and temperature changes were verified using both simulated and experimental results.


Sign in / Sign up

Export Citation Format

Share Document