scholarly journals Proteomic Analysis of Liver from Human Lipoprotein(a) Transgenic Mice Shows an Oxidative Stress and Lipid Export Response

2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Euan J. Rodger ◽  
Carolyn M. Porteous ◽  
Gregory T. Jones ◽  
Michael Legge ◽  
Torsten Kleffmann ◽  
...  

Background. Mouse models of hypercholesterolaemia have been used to identify arterial proteins involved in atherosclerosis. As the liver is extremely sensitive to dyslipidemia, one might expect major changes in the abundance of liver proteins in these models even before atherosclerosis develops. Methods. Lipid levels were measured and a proteomic approach was used to quantify proteins in the livers of mice with an elevated low-density lipoprotein (LDL) and the presence of lipoprotein(a) [Lp(a)] but no atherosclerosis. Results. The livers of Lp(a) mice showed an increased triglyceride but reduced phospholipid and oxidised lipid content. Two-dimensional gel electrophoresis and mass spectrometry analysis identified 24 liver proteins with significantly increased abundance in Lp(a) mice (P<0.05). A bioinformatic analysis of the 24 proteins showed the major effect was that of an enhanced antioxidant and lipid efflux response with significant increases in antioxidant (Park7, Gpx1, Prdx6, and Sod1) and lipid metabolism proteins (Fabp4, Acaa2, apoA4, and ApoA1). Interestingly, human liver cells treated with Lp(a) showed significant increases in Gpx1 and Prdx6 but not Sod1 or Park7. Conclusions. The presence of human LDL and Lp(a) in mice promotes an enhanced flux of lipids into the liver which elicits an antioxidant and lipid export response before the onset of atherosclerosis. The antioxidant response can be reproduced in human liver cells treated with Lp(a).

Author(s):  
Reza Afrisham ◽  
Sahar Sadegh-Nejadi ◽  
Reza Meshkani ◽  
Solaleh Emamgholipour ◽  
Molood Bagherieh ◽  
...  

Introduction: Obesity is a disorder with low-grade chronic inflammation that plays a key role in the hepatic inflammation and steatosis. Moreover, there are studies to support the role of exosomes in the cellular communications, the regulation of metabolic homeostasis and immunomodulatory activity. Accordingly, we aimed to evaluate the influence of plasma circulating exosomes derived from females with normal-weight and obesity on the secretion of inflammatory cytokines in human liver cells. Methods: Plasma circulating exosomes were isolated from four normal (N-Exo) and four obese (O-Exo) women. The exosomes were characterized and approved for CD63 expression (common exosomal protein marker) and morphology/size using the western blot and TEM methods, respectively. The exosomes were used for stimulation of HepG2 cells in vitro. After 24 h incubation, the protein levels of TNF-α,IL-6, and IL-1β were measured in the culture supernatant of HepG2 cells using the ELISA kit. Results: The protein levels of IL-6 and TNF-α in the cells treated with O-Exo and N-Exo reduced significantly in comparison with control group (P=0.039 and P<0.001 respectively), while significance differences were not found between normal and obese groups (P=0.808, and P=0.978 respectively). However, no significant differences were found between three groups in term of IL-1β levels (P=0.069). Based on the correlation analysis, the protein levels of IL-6 were positively correlated with TNF-α (r 0.978, P<0.001). Conclusion: These findings suggest that plasma circulating exosomes have probably anti-inflammatory properties independently from body mass index and may decrease the secretion of inflammatory cytokines in liver. However, further investigations in vitro and in vivo are needed to address the anti-inflammatory function of N-Exo and O-Exo in human liver cells and/or other cells.


1995 ◽  
Vol 28 (1) ◽  
pp. 118-128 ◽  
Author(s):  
MARQUÉ D. TODD ◽  
MICHAEL J. LEE ◽  
JULIE L. WILLIAMS ◽  
JOHN M. NALEZNY ◽  
PAULINE GEE ◽  
...  

2010 ◽  
Vol 30 (6) ◽  
pp. 566-573 ◽  
Author(s):  
Saura C. Sahu ◽  
Michael W. O'Donnell ◽  
Paddy L. Wiesenfeld

Metallomics ◽  
2017 ◽  
Vol 9 (3) ◽  
pp. 268-277 ◽  
Author(s):  
T. A. Marschall ◽  
N. Kroepfl ◽  
K. B. Jensen ◽  
J. Bornhorst ◽  
B. Meermann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document