AAnti-Inflammatory Effects of Plasma Circulating Exosomes Obtained from Normal-Weight and Obese Subjects on Hepatocytes

Author(s):  
Reza Afrisham ◽  
Sahar Sadegh-Nejadi ◽  
Reza Meshkani ◽  
Solaleh Emamgholipour ◽  
Molood Bagherieh ◽  
...  

Introduction: Obesity is a disorder with low-grade chronic inflammation that plays a key role in the hepatic inflammation and steatosis. Moreover, there are studies to support the role of exosomes in the cellular communications, the regulation of metabolic homeostasis and immunomodulatory activity. Accordingly, we aimed to evaluate the influence of plasma circulating exosomes derived from females with normal-weight and obesity on the secretion of inflammatory cytokines in human liver cells. Methods: Plasma circulating exosomes were isolated from four normal (N-Exo) and four obese (O-Exo) women. The exosomes were characterized and approved for CD63 expression (common exosomal protein marker) and morphology/size using the western blot and TEM methods, respectively. The exosomes were used for stimulation of HepG2 cells in vitro. After 24 h incubation, the protein levels of TNF-α,IL-6, and IL-1β were measured in the culture supernatant of HepG2 cells using the ELISA kit. Results: The protein levels of IL-6 and TNF-α in the cells treated with O-Exo and N-Exo reduced significantly in comparison with control group (P=0.039 and P<0.001 respectively), while significance differences were not found between normal and obese groups (P=0.808, and P=0.978 respectively). However, no significant differences were found between three groups in term of IL-1β levels (P=0.069). Based on the correlation analysis, the protein levels of IL-6 were positively correlated with TNF-α (r 0.978, P<0.001). Conclusion: These findings suggest that plasma circulating exosomes have probably anti-inflammatory properties independently from body mass index and may decrease the secretion of inflammatory cytokines in liver. However, further investigations in vitro and in vivo are needed to address the anti-inflammatory function of N-Exo and O-Exo in human liver cells and/or other cells.

2015 ◽  
Vol 114 (08) ◽  
pp. 337-349 ◽  
Author(s):  
Dragana Komnenov ◽  
Corey Scipione ◽  
Zainab Bazzi ◽  
Justin Garabon ◽  
Marlys Koschinsky ◽  
...  

SummaryThrombin activatable fibrinolysis inhibitor (TAFI) is the zymogen form of a basic carboxypeptidase (TAFIa) with both anti-fibrinolytic and anti-inflammatory properties. The role of TAFI in inflammatory disease is multifaceted and involves modulation both of specific inflammatory mediators as well as of the behaviour of inflammatory cells. Moreover, as suggested by in vitro studies, inflammatory mediators are capable of regulating the expression of CPB2, the gene encoding TAFI. In this study we addressed the hypothesis that decreased TAFI levels observed in inflammation are due to post-transcriptional mechanisms. Treatment of human HepG2 cells with pro-inflammatory cytokines TNFα, IL-6 in combination with IL-1β, or with bacterial lipopolysaccharide (LPS) decreased TAFI protein levels by approximately two-fold over 24 to 48 hours of treatment. Conversely, treatment of HepG2 cells with the anti-inflammatory cytokine IL-10 increased TAFI protein levels by two-fold at both time points. We found that the mechanistic basis for this modulation of TAFI levels involves binding of tristetraprolin (TTP) to the CPB2 3′-UTR, which mediates CPB2 mRNA destabilisation. In this report we also identified that HuR, another ARE-binding protein but one that stabilises transcripts, is capable of binding the CBP2 3’UTR. We found that pro-inflammatory mediators reduce the occupancy of HuR on the CPB2 3’-UTR and that the mutation of the TTP binding site in this context abolishes this effect, although TTP and HuR appear to contact discrete binding sites. Interestingly, all of the mediators tested appear to increase TAFI protein expression in THP-1 macrophages, likewise through effects on CPB2 mRNA stability.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 195
Author(s):  
Quaiser Saquib ◽  
Abdullah M. Al-Salem ◽  
Maqsood A. Siddiqui ◽  
Sabiha M. Ansari ◽  
Xiaowei Zhang ◽  
...  

Tris(1,3-Dichloro-2-propyl)phosphate (TDCPP) is an organophosphorus flame retardant (OPFR) widely used in a variety of consumer products (plastics, furniture, paints, foams, and electronics). Scientific evidence has affirmed the toxicological effects of TDCPP in in vitro and in vivo test models; however, its genotoxicity and carcinogenic effects in human cells are still obscure. Herein, we present genotoxic and carcinogenic properties of TDCPP in human liver cells (HepG2). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and neutral red uptake (NRU) assays demonstrated survival reduction in HepG2 cells after 3 days of exposure at higher concentrations (100–400 μM) of TDCPP. Comet assay and flow cytometric cell cycle experiments showed DNA damage and apoptosis in HepG2 cells after 3 days of TDCPP exposure. TDCPP treatment incremented the intracellular reactive oxygen species (ROS), nitric oxide (NO), Ca2+ influx, and esterase level in exposed cells. HepG2 mitochondrial membrane potential (ΔΨm) significantly declined and cytoplasmic localization of P53, caspase 3, and caspase 9 increased after TDCPP exposure. qPCR array quantification of the human cancer pathway revealed the upregulation of 11 genes and downregulation of two genes in TDCPP-exposed HepG2 cells. Overall, this is the first study to explicitly validate the fact that TDCPP bears the genotoxic, hepatotoxic, and carcinogenic potential, which may jeopardize human health.


2021 ◽  
Vol 16 (1) ◽  
pp. 19-31
Author(s):  
Ioan V Matei ◽  
Irit Meivar-Levy ◽  
Daniela Lixandru ◽  
Simona Dima ◽  
Ioana R Florea ◽  
...  

Autologous cells replacement therapy by liver to pancreas transdifferentiation (TD) allows diabetic patients to be also the donors of their own therapeutic tissue. Aim: To analyze whether the efficiency of the process is affected by liver donors’ heterogeneity with regard to age, gender and the metabolic state. Materials & methods: TD of liver cells derived from nondiabetic and diabetic donors at different ages was characterized at molecular and cellular levels, in vitro. Results: Neither liver cells proliferation nor the propagated cells TD efficiency directly correlate with the age (3–60 years), gender or the metabolic state of the donors. Conclusion: Human liver cells derived from a wide array of ages and metabolic states can be used for autologous cells therapies for diabetics.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Dan Li ◽  
Chenyu Li ◽  
Yan Xu

Abstract Background and Aims Acute kidney injury (AKI), commonly appeared in cardiac arrest, surgery and kidney transplantation which involved in ischemia-reperfusion (IR) injury of kidney. However, the mechanisms underlying inflammatory response in IR AKI is still unclear. Method Public dataset showed kruppel-like factor 6 (KLF6) was significantly highly expressed (P&lt;0.05) in AKI, implies KLF6 might be associated with AKI. To evaluate the mechanism of KLF6 on IR AKI, 30 rats were randomly divided into sham and IR group, and were sacrificed at 0 h, 3 h, 6 h, 12 h or 24 h after IR. Results The results showed KLF6 expression was peaking at 6 h after IR, and the expression of pro-inflammatory cytokines MCP-1 and TNF-α were increased both in serum and kidney tissues after IR, while anti-inflammatory cytokine IL-10 was decreased after IR. Furthermore, in vitro results showed KLF6 knock-down reduced the pro-inflammatory cytokines expression and increased the anti-inflammatory cytokines expression. Conclusion These results suggest that (1) KLF6 might be a novel biomarker for early diagnosis of AKI and (2) targeting KLF6 expression may offer novel strategies to protect kidneys from IR AKI Figure KLF6, AKI, Control Inflammation


2012 ◽  
Vol 2 (3) ◽  
pp. 10-19 ◽  
Author(s):  
Sheri-Ann Tan ◽  
Sonia Ramos ◽  
María Angeles Martin ◽  
Raquel Mateos ◽  
Michael Harvey ◽  
...  

2020 ◽  
Author(s):  
Yu Na Lee ◽  
Hye-Jin Yi ◽  
Eun Hye Seo ◽  
Jooyun Oh ◽  
Song Lee ◽  
...  

Abstract Background: Although pancreatic islet transplantation therapy is ideal for diabetes patients, several hurdles have prevented it from becoming a standard treatment, including donor shortage and low engraftment efficacy. In this study, we prepared insulin-producing cells trans-differentiated from adult human liver cells as a new islet source. Also, cell sheets formation could improve differentiation efficiency and graft survival.Methods: Liver cells were expanded in vitro and trans-differentiated to IPCs using adenovirus vectors carrying human genes for PDX1, NEUROD1 and MAFA. IPCs were seeded on temperature-responsive culture dishes to form cell sheets. Differentiation efficiency were confirmed by ß cell-specific gene expression, insulin production, and immunohistochemistry. IPCs suspension was injected by portal vein (PV), and IPCs sheet was transplanted on the liver surface of the diabetic nude mouse. The therapeutic effect of IPC sheet was evaluated by comparing blood glucose control, weight gain, histological evaluation and hepatotoxicity with IPCs injection group. Also, cell biodistribution was assessed by in vivo/ex vivo fluorescence image tagging.Results: Insulin gene expression and protein production were significantly increased on IPC sheets compared with those in IPCs cultured on conventional culture dishes. Transplanted IPC sheets displayed significantly higher engraftment efficiency and fewer transplanted cells in other organs than injected IPCs, and also lower liver toxicity, improved blood glucose levels, and weight gain. One and two weeks following IPC sheet transplantation, immunohistochemical analyses of liver tissue revealed positive staining for PDX1 and insulin.Conclusions: In conclusion, cell sheet formation enhanced the differentiation function and maturation of IPCs in vitro. Additionally, parameters for clinical application such as distribution, therapeutic efficacy, and toxicity were favorable. The cell sheet technique may be used with IPCs derived from various cell sources in clinical applications.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
LMM Marques ◽  
U Rottkord ◽  
I Krug ◽  
M Behrens ◽  
A Adhikari ◽  
...  

Toxins ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 2 ◽  
Author(s):  
Jee Eun Yoon ◽  
Kwang Yong Lee ◽  
Jin Sil Seok ◽  
Wei Nee Cheng ◽  
Hyuk Cheol Kwon ◽  
...  

Zearalenone (ZEN) is a mycotoxin produced by Fusarium species; however, its mechanisms of action in human livers have not been fully elucidated. Thus, we investigated the toxic mechanisms of ZEN in human liver cells. HepG2 cells were treated with ZEN (0–40 μg/mL) for up to 24 h. A significant decrease in cell viability was observed after treatment with 20 and 40 μg/mL of ZEN, including a significant increase in apoptosis and reactive oxygen species production. ZEN increased GRP78 and CHOP, and eIF2α phosphorylation, indicating ER stress; elevated transcription of the autophagy-associated genes, beclin1 and LC3, and translation of LC3; and increased phase I metabolism by increasing PXR and CYP3A4. The protein expression level of CYP3A4 was higher with ZEN treatment up to 20 μg/mL, but remained at the control level after treatment with 40 μg/mL ZEN. In phase II metabolism, Nrf2 activation and UGT1A expression were increased with ZEN treatment up to 20 μg/mL. Treating cells with an ER stress inhibitor alleviated ZEN-induced cell death and autophagy, and inhibited the expression of phase I/II enzymes. Overall, high ZEN concentrations can modulate the expression of phase I/II enzymes via ER stress and reduced protein levels in human liver cells.


2015 ◽  
Vol 4 (5) ◽  
pp. 1289-1296 ◽  
Author(s):  
S. Meyer ◽  
G. Raber ◽  
F. Ebert ◽  
L. Leffers ◽  
S. M. Müller ◽  
...  

Arsenic-containing fatty acids are bioavailable and toxic to human liver cells in culture.


Sign in / Sign up

Export Citation Format

Share Document