scholarly journals Local Degree of Freedom of Clutter for Reduced-Dimension Space-Time Adaptive Processing with MIMO Radar

2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Yiduo Guo ◽  
Jian Gong ◽  
Yu Xiao

Degree of freedom (DOF) of clutter in the reduced-dimension (RD) domain, which is called local DOF (LDOF), is of great importance for RD MIMO-STAP (space-time adaptive processing for multiple-input multiple-output radar) algorithms. In this paper, the LDOF equivalence of different RD MIMO-STAP algorithms are firstly proved, and then a generalized LDOF estimation rule under different conditions is developed to estimate the clutter LDOF for MIMO radar effectively. The accuracy of the proposed rule is verified, and how to design RD MIMO-STAP processors under the guidance of the proposed rule is presented through numerical simulations.

Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2722 ◽  
Author(s):  
Ze Yu ◽  
Shusen Wang ◽  
Wei Liu ◽  
Chunsheng Li

Compared with single-input multiple-output (SIMO) radar, colocated multiple-input multiple-output (MIMO) radar can detect moving targets better by adopting waveform diversity. When the colocated MIMO radar transmits a set of orthogonal waveforms, the transmit weights are usually set equal to one, and the receive weights are adaptively adjusted to suppress clutter based on space-time adaptive processing technology. This paper proposes the joint design of space-time transmit and receive weights for colocated MIMO radar. The approach is based on the premise that all possible moving targets are detected by setting a lower threshold. In each direction where there may be moving targets, the space-time transmit and receive weights can be iteratively updated by using the proposed approach to improve the output signal-to-interference-plus-noise ratio (SINR), which is helpful to improve the precision of target detection. Simulation results demonstrate that the proposed method improves the output SINR by greater than 13 dB.


Sign in / Sign up

Export Citation Format

Share Document