space time adaptive processing
Recently Published Documents


TOTAL DOCUMENTS

515
(FIVE YEARS 77)

H-INDEX

27
(FIVE YEARS 2)

2022 ◽  
Vol 72 (1) ◽  
pp. 122-132
Author(s):  
Remadevi M. ◽  
N. Sureshkumar ◽  
R. Rajesh ◽  
T. Santhanakrishnan

Towed array sonars are preferred for detecting stealthy underwater targets that emit faint acoustic signals in the ocean, especially in shallow waters. However, the towing ship being near to the array behaves as a loud target, introducing additional interfering signals to the array, severely affecting the detection and classification of potential targets. Canceling this underlying interference signal is a challenging task and is investigated in this paper for a shallow ocean operational scenario where the problem is more critical due to the multipath phenomenon. A method exploiting the eigenvector analysis of spatio-temporal covariance matrix based on space time adaptive processing is proposed for suppressing tow ship interference and thus improving target detection. The developed algorithm learns the interference patterns in the presence of target signals to mitigate the interference across azimuth and to remove the spectral leakage of own-ship. The algorithm is statistically analyzed through a set of relevant metrics and is tested on simulated data that are equivalent to the data received by a towed linear array of acoustic sensors in a shallow ocean. The results indicate a reduction of 20-25dB in the tow ship interference power while the detection of long-range low SNR targets remain largely unaffected with minimal power-loss. In addition, it is demonstrated that the spectral leakage of tow ship, on multiple beams across the azimuth, due to multipath, is also alleviated leading to superior classification capabilities. The robustness of the proposed algorithm is validated by the open ocean experiment in the coastal shallow region of the Arabian Sea at Off-Kochi area of India, which produced results in close agreement with the simulations. A comparison of the simulation and experimental results with the existing PCI and ECA methods is also carried out, suggesting the proposed method is quite effective in suppressing the tow ship interference and is immensely beneficial for the detection and classification of long-range targets.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 77
Author(s):  
Kun Liu ◽  
Tong Wang ◽  
Jianxin Wu ◽  
Jinming Chen

In the presence of unknown array errors, sparse recovery based space-time adaptive processing (SR-STAP) methods usually directly use the ideal spatial steering vectors without array errors to construct the space-time dictionary; thus, the steering vector mismatch between the dictionary and clutter data will cause a severe performance degradation of SR-STAP methods. To solve this problem, in this paper, we propose a two-stage SR-STAP method for suppressing nonhomogeneous clutter in the presence of arbitrary array errors. In the first stage, utilizing the spatial-temporal coupling property of the ground clutter, a set of spatial steering vectors with array errors are well estimated by fine Doppler localization. In the second stage, firstly, in order to solve the model mismatch problem caused by array errors, we directly use these spatial steering vectors obtained in the first stage to construct the space-time dictionary, and then, the constructed dictionary and multiple measurement vectors sparse Bayesian learning (MSBL) algorithm are combined for space-time adaptive processing (STAP). The proposed SR-STAP method can exhibit superior clutter suppression performance and target detection performance in the presence of arbitrary array errors. Simulation results validate the effectiveness of the proposed method.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6339
Author(s):  
Yaqi Deng ◽  
Wenguo Li ◽  
Saiwen Zhang ◽  
Fulong Wang ◽  
Weichu Xiao ◽  
...  

For an airborne passive radar with contaminated reference signals, the clutter caused by multipath (MP) signals involved in the reference channel (MP clutter) corrupts the covariance estimation in space-time adaptive processing (STAP). In order to overcome the severe STAP performance degradation caused by impure reference signals and off-grid effects, a novel MP clutter suppression method based on local search is proposed for airborne passive radar. In the proposed method, the global dictionary is constructed based on the sparse measurement model of MP clutter, and the global atoms that are most relevant to the residual are selected. Then, the local dictionary is designed iteratively, and local searches are performed to match real MP clutter points. Finally, the off-grid effects are mitigated, and the MP clutter is suppressed from all matched atoms. A range of simulations is conducted in order to demonstrate the effectiveness of the proposed method.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Bo Dang ◽  
Yan Zhou

Two-dimensional pulse-to-pulse canceller (TDPC) of ground clutter can effectively suppress the clutter along the clutter trace, and therefore the moving target detectability of the following space-time adaptive processing (STAP) algorithm can be improved after TDPC as the clutter prefilter. However, TDPC may greatly impair the energy of moving target when inaccurate knowledge is exploited, which is detrimental to target detection. Aiming at this problem, a robust two-dimensional pulse-to-pulse canceller (RTDPC) of ground clutter is proposed. In order to enhance the TDPC’s robustness with inaccurate radar system parameters, which are mainly the platform velocity and crab angle, the errors of estimated platform velocity and crab angle are taken as the prior knowledge and added into the design of the clutter filter coefficient matrix. By exploiting RTDPC as the clutter prefilter, the moving target detectability of the following nonadaptive detection algorithm or STAP algorithm can also be enhanced. The simulated and MCARM data are utilized to verify the clutter suppression performance of RTDPC with inaccurate platform velocity and crab angle.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1169
Author(s):  
Shiyi Li ◽  
Na Wang ◽  
Jindong Zhang ◽  
Chenyan Xue ◽  
Daiyin Zhu

Space-time adaptive processing (STAP) techniques have been motivated as a key enabling technology for advanced airborne radar applications. In this paper, a slow-time code design is considered for the STAP technique in airborne radar, and the principle for improving signal-to-clutter and noise ratio (SCNR) based on slow-time coding is given. We present two algorithms for the optimization of transmitted codes under the energy constraint on a predefined area of spatial-frequency and Doppler-frequency plane. The proposed algorithms are constructed based on convex optimization (CVX) and alternating direction (AD), respectively. Several criteria regarding parameter selection are also given for the optimization process. Numerical examples show the feasibility and effectiveness of the proposed methods.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4569
Author(s):  
Giovanni Paolo Blasone ◽  
Fabiola Colone ◽  
Pierfrancesco Lombardo ◽  
Philipp Wojaczek ◽  
Diego Cristallini

This paper deals with the problem of detection and direction of arrival (DOA) estimation of slowly moving targets against clutter in multichannel mobile passive radar. A dual cancelled channel space-time adaptive processing (STAP) scheme is proposed, aiming at reducing the system computational complexity, as well as the amount of required training data, compared to a conventional full array solution. The proposed scheme is shown to yield comparable target detection capability and DOA estimation accuracy with respect to the corresponding full array solution, despite the lower computational cost required. Moreover, it offers increased robustness against adaptivity losses, operating effectively even in the presence of a limited set of training data, as often available in the highly non-homogeneous clutter scenarios experienced in bistatic passive radar. The effectiveness of the proposed scheme and its suitability for passive GMTI are demonstrated against both simulated and experimental data collected by a DVB-T-based multichannel mobile passive radar.


Sign in / Sign up

Export Citation Format

Share Document