scholarly journals Packet Scheduling for Multiple-Switch Software-Defined Networking in Edge Computing Environment

2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Hai Xue ◽  
Kyung Tae Kim ◽  
Hee Yong Youn

Software-defined networking (SDN) decouples the control plane and data forwarding plane to overcome the limitations of traditional networking infrastructure. Among several communication protocols employed for SDN, OpenFlow is most widely used for the communication between the controller and switch. In this paper two packet scheduling schemes, FCFS-Pushout (FCFS-PO) and FCFS-Pushout-Priority (FCFS-PO-P), are proposed to effectively handle the overload issue of multiple-switch SDN targeting the edge computing environment. Analytical models on their operations are developed, and extensive experiment based on a testbed is carried out to evaluate the schemes. They reveal that both of them are better than the typical FCFS-Block (FCFS-BL) scheduling algorithm in terms of packet wait time. Furthermore, FCFS-PO-P is found to be more effective than FCFS-PO in the edge computing environment.

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Guangshun Li ◽  
Shuzhen Xu ◽  
Junhua Wu ◽  
Heng Ding

With the development of Internet of Things (IoT), the massive data generated by it forms big data, and the complexity of dealing with big data brings challenges to resource scheduling in edge computing. In order to solve the problem of resource scheduling and improve the satisfaction of users in edge computing environment, we propose a user-oriented improved spectral clustering scheduling algorithm (ISCM) in this paper. Based on the improved k-means algorithm, the ISCM algorithm solves the problem that the clustering result is sensitive to the initial value and realizes the reclustering, which makes the obtained clustering results more stable. Finally, the edge computing resource scheduling scheme is obtained based on the clustering results. The experimental results show that the resource scheduling scheme based on improved spectral clustering algorithm is superior to traditional spectral clustering algorithm in edge computing environment.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 955
Author(s):  
Zhiyuan Li ◽  
Ershuai Peng

With the development of smart vehicles and various vehicular applications, Vehicular Edge Computing (VEC) paradigm has attracted from academic and industry. Compared with the cloud computing platform, VEC has several new features, such as the higher network bandwidth and the lower transmission delay. Recently, vehicular computation-intensive task offloading has become a new research field for the vehicular edge computing networks. However, dynamic network topology and the bursty computation tasks offloading, which causes to the computation load unbalancing for the VEC networking. To solve this issue, this paper proposed an optimal control-based computing task scheduling algorithm. Then, we introduce software defined networking/OpenFlow framework to build a software-defined vehicular edge networking structure. The proposed algorithm can obtain global optimum results and achieve the load-balancing by the virtue of the global load status information. Besides, the proposed algorithm has strong adaptiveness in dynamic network environments by automatic parameter tuning. Experimental results show that the proposed algorithm can effectively improve the utilization of computation resources and meet the requirements of computation and transmission delay for various vehicular tasks.


2021 ◽  
Vol 13 (3) ◽  
pp. 78
Author(s):  
Chuanhong Li ◽  
Lei Song ◽  
Xuewen Zeng

The continuous increase in network traffic has sharply increased the demand for high-performance packet processing systems. For a high-performance packet processing system based on multi-core processors, the packet scheduling algorithm is critical because of the significant role it plays in load distribution, which is related to system throughput, attracting intensive research attention. However, it is not an easy task since the canonical flow-level packet scheduling algorithm is vulnerable to traffic locality, while the packet-level packet scheduling algorithm fails to maintain cache affinity. In this paper, we propose an adaptive throughput-first packet scheduling algorithm for DPDK-based packet processing systems. Combined with the feature of DPDK burst-oriented packet receiving and transmitting, we propose using Subflow as the scheduling unit and the adjustment unit making the proposed algorithm not only maintain the advantages of flow-level packet scheduling algorithms when the adjustment does not happen but also avoid packet loss as much as possible when the target core may be overloaded Experimental results show that the proposed method outperforms Round-Robin, HRW (High Random Weight), and CRC32 on system throughput and packet loss rate.


Sign in / Sign up

Export Citation Format

Share Document