scholarly journals Local Negative Base Transform and Image Scrambling

2018 ◽  
Vol 2018 ◽  
pp. 1-18
Author(s):  
Gangqiang Xiong ◽  
Shengqian Zheng ◽  
Jiang Wang ◽  
Zhanchuan Cai ◽  
Dongxu Qi

Scrambling transform is an important tool for image encryption and hiding. A new class of scrambling algorithms is obtained by exploiting negative integer as the base of number representation to express the natural numbers. Unlike Arnold transform, the proposed scrambling transform is one-dimensional and nonlinear, and an image can be shuffled by using the proposed transform to rearrange the rows and columns of the image separately or to permute the pixels of the image after scanned into a sequence of pixels; it can be also applied to shuffle certain part region of an image. Firstly, the transformation algorithm for converting nonnegative integers in base B to the corresponding integers in base -B is given in this paper, which is the computational core of scrambling transform and the basis of studying scrambling transform. Then, the three kinds of transforms are introduced, that is, negative base transform (abbreviated as NBT), modular negative base transform (MNBT), and local negative base transform (LNBT) with three parameters, where NBT is an injection and MNBT a surjection and LNBT a bijection. The minimum transform periods of LNBT are calculated for some different values of the three parameters, and the algorithm for calculating the inverse transform of LNBT is given. The image scrambled by LBNT can be recovered by the transform period or the inverse transform. Numerical experiments show that LNBT is an efficient scrambling transform and a strong operation of confusing gray values of pixels in the application of image encryption. Therefore, the proposed transform is a novel tool for information hiding and encryption of two-dimensional image and one-dimensional audio.

Author(s):  
J. Fink

Conducting polymers comprises a new class of materials achieving electrical conductivities which rival those of the best metals. The parent compounds (conjugated polymers) are quasi-one-dimensional semiconductors. These polymers can be doped by electron acceptors or electron donors. The prototype of these materials is polyacetylene (PA). There are various other conjugated polymers such as polyparaphenylene, polyphenylenevinylene, polypoyrrole or polythiophene. The doped systems, i.e. the conducting polymers, have intersting potential technological applications such as replacement of conventional metals in electronic shielding and antistatic equipment, rechargable batteries, and flexible light emitting diodes.Although these systems have been investigated almost 20 years, the electronic structure of the doped metallic systems is not clear and even the reason for the gap in undoped semiconducting systems is under discussion.


Author(s):  
Aarushi Shrivastava ◽  
Janki Ballabh Sharma ◽  
Sunil Dutt Purohit

Objective: In the recent multimedia technology images play an integral role in communication. Here in this paper, we propose a new color image encryption method using FWT (Fractional Wavelet transform), double random phases and Arnold transform in HSV color domain. Methods: Firstly the image is changed into the HSV domain and the encoding is done using the FWT which is the combination of the fractional Fourier transform with wavelet transform and the two random phase masks are used in the double random phase encoding. In this one inverse DWT is taken at the end in order to obtain the encrypted image. To scramble the matrices the Arnold transform is used with different iterative values. The fractional order of FRFT, the wavelet family and the iterative numbers of Arnold transform are used as various secret keys in order to enhance the level of security of the proposed method. Results: The performance of the scheme is analyzed through its PSNR and SSIM values, key space, entropy, statistical analysis which demonstrates its effectiveness and feasibility of the proposed technique. Stimulation result verifies its robustness in comparison to nearby schemes. Conclusion: This method develops the better security, enlarged and sensitive key space with improved PSNR and SSIM. FWT reflecting time frequency information adds on to its flexibility with additional variables and making it more suitable for secure transmission.


Author(s):  
Masaaki Fujiyoshi ◽  
Hitoshi Kiya

This chapter addresses a new class of Reversible Information Hiding (RIH) and its application to verifying the integrity of images. The method of RIH distorts an image once to hide information in the image itself, and it not only extracts embedded information but also recovers the original image from the distorted image. The well-known class of RIH is based on the expansion of prediction error in which a location map, which indicates the pixel block positions of a certain block category, is required to recover the original image. In contrast, the method described in this chapter is free from having to memorize any parameters including location maps. This feature suits the applications of image authentication in which the integrity of extracted information guarantees that of a suspected image. If image-dependent parameters such as location maps are required, the suspected image should first be identified from all possible images. The method described in this chapter reduces such costly processes.


2020 ◽  
Vol 496 (2) ◽  
pp. 1023-1034
Author(s):  
Bidzina M Shergelashvili ◽  
Velentin N Melnik ◽  
Grigol Dididze ◽  
Horst Fichtner ◽  
Günter Brenn ◽  
...  

ABSTRACT A new class of one-dimensional solar wind models is developed within the general polytropic, single-fluid hydrodynamic framework. The particular case of quasi-adiabatic radial expansion with a localized heating source is considered. We consider analytical solutions with continuous Mach number over the entire radial domain while allowing for jumps in the flow velocity, density, and temperature, provided that there exists an external source of energy in the vicinity of the critical point that supports such jumps in physical quantities. This is substantially distinct from both the standard Parker solar wind model and the original nozzle solutions, where such discontinuous solutions are not permissible. We obtain novel sample analytic solutions of the governing equations corresponding to both slow and fast winds.


Sign in / Sign up

Export Citation Format

Share Document