scholarly journals Nonlinear Friction and Dynamical Identification for a Robot Manipulator with Improved Cuckoo Search Algorithm

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Li Ding ◽  
Xingcheng Li ◽  
Qilin Li ◽  
Yuan Chao

This paper concerns the problem of dynamical identification for an industrial robot manipulator and presents an identification procedure based on an improved cuckoo search algorithm. Firstly, a dynamical model of a 6-DOF industrial serial robot has been derived. And a nonlinear friction model is added to describe the friction characteristic at motion reversal. Secondly, we use a cuckoo search algorithm to identify the unknown parameters. To enhance the performance of the original algorithm, both chaotic operator and emotion operator are employed to help the algorithm jump out of local optimum. Then, the proposed algorithm has been implemented on the first three joints of the ER-16 robot manipulator through an identification experiment. The results show that (1) the proposed algorithm has higher identification accuracy over the cuckoo search algorithm or particle swarm optimization algorithm and (2) compared to linear friction model the nonlinear model can describe the friction characteristic of joints better.

2017 ◽  
Vol 116 ◽  
pp. 63-78 ◽  
Author(s):  
Geng Sun ◽  
Yanheng Liu ◽  
Ming Yang ◽  
Aimin Wang ◽  
Shuang Liang ◽  
...  

2018 ◽  
Vol 30 (4) ◽  
pp. 367-386 ◽  
Author(s):  
Liyang Xiao ◽  
Mahjoub Dridi ◽  
Amir Hajjam El Hassani ◽  
Wanlong Lin ◽  
Hongying Fei

Abstract In this study, we aim to minimize the total waiting time between successive treatments for inpatients in rehabilitation hospitals (departments) during a working day. Firstly, the daily treatment scheduling problem is formulated as a mixed-integer linear programming model, taking into consideration real-life requirements, and is solved by Gurobi, a commercial solver. Then, an improved cuckoo search algorithm is developed to obtain good quality solutions quickly for large-sized problems. Our methods are demonstrated with data collected from a medium-sized rehabilitation hospital in China. The numerical results indicate that the improved cuckoo search algorithm outperforms the real schedules applied in the targeted hospital with regard to the total waiting time of inpatients. Gurobi can construct schedules without waits for all the tested dataset though its efficiency is quite low. Three sets of numerical experiments are executed to compare the improved cuckoo search algorithm with Gurobi in terms of solution quality, effectiveness and capability to solve large instances.


Author(s):  
Wenjie Wang ◽  
Congcong Chen ◽  
Yuting Cao ◽  
Jian Xu ◽  
Xiaohua Wang

Background: Dexterity is an important index for evaluating the motion performance of a robot. The size of the robot connecting rods directly affects the performance of flexibility. Objective: The purpose of this study is to provide an overview of optimal design methods from many pieces of literature and patents, and propose a new optimal design method for ensuring the robot completes its tasks flexibly and efficiently under workspace constraints. Methods: The kinematics and working space of the robot are analyzed to determine the range of motion of each joint. Then, a dexterity index is established based on the mean value of the global spatial condition number. Finally, an improved cuckoo algorithm is proposed, which changes the step size control factor with the number of iterations. Taking the dexterity index as the objective optimization function and the working radius as the constraint condition, the improved cuckoo search algorithm is used to optimize the size of the robot rod. Results: The improved cuckoo algorithm and proposed rod size optimized method are fully evaluated by experiments and comparative studies. The optimization design process shows that the proposed method has better solution accuracy and faster convergence speed. The optimized design results show that the robot's dexterity index has increased by 26.1%. Conclusion: The proposed method has better solution accuracy and faster convergence speed. The method was suitable for optimizing the rod parameters of the robot, and it was very meaningful to improve the motion performance of the robot.


Sign in / Sign up

Export Citation Format

Share Document