scholarly journals Research on the Relationship between Dynamic Message Sign Control Strategies and Driving Safety in Freeway Work Zones

2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Wenxiang Xu ◽  
Xiaohua Zhao ◽  
Yufei Chen ◽  
Yang Bian ◽  
Haijian Li

Several studies have researched the effect of dynamic message signs (DMSs) on the driving safety in work zones. However, only a few studies have examined the design of DMS control strategies in work zones. The purpose of this study is to investigate the effects of DMS control strategies on driving decisions and behaviors and to improve the driving safety in work zones by changing the content and placement of DMSs. In this study, five control strategies are proposed by combining five DMSs with different contents (“change lane” versus “go straight”). A total of 32 participants participated in this study. Each participant drove in five scenarios in a high-fidelity driving simulator corresponding to strategies 1-5. The results show that the control strategies have a significant effect on drivers’ decisions and behavior (e.g., the driving speed, acceleration, and lateral placement). All strategies reduce the drivers’ speeds and improve their control stability and compliance. After conducting analytic hierarchy process (AHP) analysis, strategy 2 was removed because the approaching speed exceeded the speed limit. The weight vectors of strategies 1, 3, 4, and 5 under free-flow traffic and traffic jam conditions are Ƴfree-flow  traffic=0.25,0.28,0.17,0.23 and Ƴtraffic  jam=[0.17,0.28,0.2,0.3], respectively. These results show that strategy 4 is not suitable for free-flow traffic in work zones, while strategies 5 and 3 are suitable for traffic jams in work zones. Strategy  3 is suitable for both free-flow traffic and traffic jams. The first occurrence of a decision sign that contains lane change content is key to the driver’s decision; in addition, the position of signage with such information should gradually be moved closer to work zones with increasing traffic flow.

Author(s):  
Mustafa Suhail Almallah ◽  
Qinaat Hussain ◽  
Wael K. M Alhajyaseen ◽  
Tom Brijs

Work zones are road sections where road construction or maintenance activities take place. These work zones usually have different alignment and furniture than the original road and thus temporary lower speeds are adopted at these locations. However, drivers usually face difficulty in adopting the new speed limit and maneuvering safely due to the change in alignment. Therefore, work zones are commonly considered as hazardous locations with higher crash rates and severities as reported in the literature. This study aims to investigate the effectiveness of a variable message signs (VMSs) based system for work zone advance warning area. The proposed system aims at enhancing driver adaptation of the reduced speed limit, encourage early lane changing maneuvers and improve the cooperative driving behavior in the pre-work zone road section. The study was conducted using a driving simulator at the College of Engineering of Qatar University. Seventy volunteers holding a valid Qatari passenger car driving license participated in this study. In the simulator experiment, we have two scenarios (control and treatment). The control scenario was designed based on the Qatar Work Zone Traffic Management Guide (QWZTMG), where the length of the advance warning area is 1000 m. Meanwhile, the treatment scenario contains six newly designed variable message signs where two of them were animation-based. The VMSs were placed at the same locations of the static signs in the control scenario. Both scenarios were tested for two situations. In the first situation, the participants were asked to drive on the left lane while in the second situation, they were instructed to drive on the second lane. The study results showed that the proposed system was effective in motivating drivers to reduce their traveling speed in advance. Compared to the control scenario, drivers’ mean speed was significantly 6.3 and 11.1 kph lower in the VMS scenario in the first and second situations, respectively. Furthermore, the VMS scenario encouraged early lane changing maneuvers. In the VMS scenario, drivers changed their lanes in advance by 150 m compared to the control scenario. In addition, the proposed system was effective in motivating drivers to keep larger headways with the frontal merging vehicle. Taking into account the results from this study, we recommend the proposed VMS based system as a potentially effective treatment to improve traffic safety at work zones.


Urban Science ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 49
Author(s):  
Snehanshu Banerjee ◽  
Mansoureh Jeihani ◽  
Danny D. Brown ◽  
Samira Ahangari

This study investigates the potential effect(s) of different dynamic message signs (DMSs) on driver behavior using a full-scale high-fidelity driving simulator. Different DMSs are categorized by their content, structure, and type of messages. A random forest algorithm is used for three separate behavioral analyses—a route diversion analysis, a route choice analysis, and a compliance analysis—to identify the potential and relative influences of different DMSs on these aspects of driver behavior. A total of 390 simulation runs are conducted using a sample of 65 participants from diverse socioeconomic backgrounds. Results obtained suggest that DMSs displaying lane closure and delay information with advisory messages are most influential with regards to diversion, while color-coded DMSs and DMSs with avoid route advice are the top contributors potentially impacting route choice decisions and DMS compliance. In this first-of-a-kind study, based on the responses to the pre- and post-simulation surveys as well as results obtained from the analysis of driving-simulation-session data, the authors found that color-coded DMSs are more effective than alphanumeric DMSs, especially in scenarios that demand high compliance from drivers. The increased effectiveness may be attributed to reduced comprehension time and ease with which such DMSs are understood by a greater percentage of road users.


Author(s):  
Megat-Usamah Megat-Johari ◽  
Nusayba Megat-Johari ◽  
Peter T. Savolainen ◽  
Timothy J. Gates ◽  
Eva Kassens-Noor

Transportation agencies have increasingly been using dynamic message signs (DMS) to communicate safety messages in an effort to both increase awareness of important safety issues and to influence driver behavior. Despite their widespread use, evaluations as to potential impacts on driver behavior, and the resultant impacts on traffic crashes, have been very limited. This study addresses this gap in the extant literature and assesses the relationship between traffic crashes and the frequency with which various types of safety messages are displayed. Safety message data were collected from a total of 202 DMS on freeways across the state of Michigan between 2014 and 2018. These data were integrated with traffic volume, roadway geometry, and crash data for segments that were located downstream of each DMS. A series of random parameters negative binomial models were estimated to examine total, speeding-related, and nighttime crashes based on historical messaging data while controlling for other site-specific factors. The results did not show any significant differences with respect to total crashes. Marginal declines in nighttime crashes were observed at locations with more frequent messages related to impaired driving, though these differences were also not statistically significant. Finally, speeding-related crashes were significantly less frequent near DMS that showed higher numbers of messages related to speeding or tailgating. Important issues are highlighted with respect to methodological concerns that arise in the analysis of such data. Field research is warranted to investigate potential impacts on driving behavior at the level of individual drivers.


Author(s):  
Qing Cai ◽  
Moatz Saad ◽  
Mohamed Abdel-Aty ◽  
Jinghui Yuan ◽  
Jaeyoung Lee

With the challenges of increasing traffic congestion, the concept of managed lanes (MLs) has been gaining popularity recently as a means to effectively improve traffic mobility. MLs are usually designed to be left-lane concurrent with an at-grade access/exit. Such a design forms weaving segments since it requires vehicles to change multiple general purpose lanes (GPLs) to enter or exit the ML. The weaving segments could have a negative impact on traffic safety in the GPLs. This study provides a comprehensive investigation of the safety impact of different lengths for each lane change maneuver on GPL weaving segments close to the ingress and egress of MLs through two simulation approaches: VISSIM microsimulation and driving simulator. The two simulation studies are developed based on traffic data collected from freeway I-95 in Miami, Florida. The results from the two simulation studies support each other. Based on the two simulation studies, it is recommended that 1,000 feet be used as the optimal length for per lane change at the GPLs weaving segments with MLs. The safety impact of traffic volume, variable speed limit control strategies, and drivers’ gender and age characteristics are also explored. This study can provide valuable insight for evaluating the traffic performance of freeway weaving segments with the presence of concurrent GPLs and MLs in a highway safety context. It also provides guidelines for future conversion of freeways to include MLs.


2016 ◽  
Vol 15 (1) ◽  
pp. 95-106
Author(s):  
Gito SUGIYANTO

Traffic congestion is one of the significant transport problems in many cities in developing countries. Increased economic growth and motorization have created more traffic congestion. The application of transportation demand management like congestion pricing can reduce congestion, pollution and increase road safety. The aim of this research is to estimate the congestion pricing of motorcycles and the effect of a congestion pricing scheme on the generalized cost and speed of a motorcycle. The amount of congestion pricing is the difference between actual generalized cost in traffic jams and in free-flow speed conditions. The analysis approach using 3 components of generalized costs of motorcycle: vehicle operating, travel time and externality cost (pollution cost). The approach to analyze the pollution cost is marginal-health cost and fuel consumption in traffic jams and free-flow speed conditions. The value of time based on Gross Regional Domestic Product per capita in Yogyakarta City in October 2012. The simulation to estimate the effect of congestion pricing using Equilibre Multimodal, Multimodal Equilibrium-2 (EMME-2) software. The results of this study show that while the free-flow speed of a motorcycle to the city of Yogyakarta is 42.42 km/h, with corresponding generalized cost of IDR1098 per trip, the actual speed in traffic jams is 10.77 km/h producing a generalized cost of IDR2767 per trip, giving a congestion pricing for a motorcycle of IDR1669 per trip. Based on the simulation by using EMME-2, the effect of congestion pricing will increase on vehicle speed by 0.72 to 8.11 %. The highest increase of vehicle speed occurred in Malioboro Street at 2.26 km/h, while the largest decrease occurred in Mayor Suryotomo Street at north-south direction at 1.07 km/h. Another effect of this application for motorcycles users will decrease the generalized cost by 1.09 to 6.63 %.


Author(s):  
Edward Downs

A pre-test, post-test experiment was conducted to determine if using a popular racing game on a PlayStation® 3 video game console could change a player's intent to drive distracted. Results indicated that those who were driving distracted (texting or talking) in a video game driving simulator had significantly more crashes, speed violations, and fog-line crossings than those in a non-distracted driving control group. These findings are consistent with predictions from the ACT-R cognitive architecture and threaded cognition theory. A follow-up study manipulated the original protocol by establishing a non-distracted baseline for participants' driving abilities as a comparison. Results demonstrated that this manipulation resulted in a significantly stronger change in attitude against driving distracted than in the original procedure. The implications help to inform driving safety programs on proper protocol for the use of game consoles to change attitudes toward distracted driving.


Author(s):  
James Unverricht ◽  
Yusuke Yamani ◽  
Jing Chen ◽  
William J. Horrey

Objective The present study examines the effect of an existing driver training program, FOrward Concentration and Attention Learning (FOCAL) on young drivers’ calibration, drivers’ ability to estimate the length of their in-vehicle glances while driving, using two different measures, normalized difference scores and Brier Scores. Background Young drivers are poor at maintaining attention to the forward roadway while driving a vehicle. Additionally, drivers may overestimate their attention maintenance abilities. Driver training programs such as FOCAL may train target skills such as attention maintenance but also might serve as a promising way to reduce errors in drivers’ calibration of their self-perceived attention maintenance behaviors in comparison to their actual performance. Method Thirty-six participants completed either FOCAL or a Placebo training program, immediately followed by driving simulator evaluations of their attention maintenance performance. In the evaluation drive, participants navigated four driving simulator scenarios during which their eyes were tracked. In each scenario, participants performed a map task on a tablet simulating an in-vehicle infotainment system. Results FOCAL-trained drivers maintained their attention to the forward roadway more and reported better calibration using the normalized difference measure than Placebo-trained drivers. However, the Brier scores did not distinguish the two groups on their calibration. Conclusion The study implies that FOCAL has the potential to improve not only attention maintenance skills but also calibration of the skills for young drivers. Application Driver training programs may be designed to train not only targeted higher cognitive skills but also driver calibration—both critical for driving safety in young drivers.


Sign in / Sign up

Export Citation Format

Share Document