scholarly journals Kamenev Type Oscillatory Criteria for Linear Conformable Fractional Differential Equations

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Jing Shao ◽  
Zhaowen Zheng

Using integral average method and properties of conformable fractional derivative, new Kamenev type oscillation criteria are given firstly for conformable fractional differential equations, which improve known results in oscillation theory. Examples are also given to illustrate the effectiveness of the main results.

2021 ◽  
pp. 578-587
Author(s):  
T. Gayathri ◽  
M. Sathish Kumar ◽  
V. Sadhasivam

In this paper, we develop the Hille and Nehari Type criteria for the oscillation of all solutions to the Fractional Differential Equations involving Conformable fractional derivative. Some new oscillatory criteria are obtained by using the Riccati transformations and comparison technique. We show the validity and effectiveness of our results by providing various examples.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Hui Liu ◽  
Run Xu

In this paper, the oscillatory of the Kamenev-type linear conformable fractional differential equations in the form of ptyα+1tα+yα+1t+qtyt=0 is studied, where t≥t0 and 0<α≤1. By employing a generalized Riccati transformation technique and integral average method, we obtain some oscillation criteria for the equation. We also give some examples to illustrate the significance of our results.


2017 ◽  
Vol 6 (2) ◽  
pp. 49 ◽  
Author(s):  
Zainab Ayati ◽  
Jafar Biaar ◽  
Mousa Ilei

This paper is aimed to develop two well-known nonlinear ordinary differential equations, Bernoulli and Riccati equations to fractional form. General solution to fractional differential equations are detected, based on conformable fractional derivative. For each equation, numerical examples are presented to illustrate the proposed approach.  


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Hui Liu ◽  
Run Xu

In this paper, we discuss a class of fractional differential equations of the form D-α+1y(t)·D-αy(t)-p(t)f(D-αy(t))+q(t)h∫t∞(s-t)-αy(s)ds=0.D-αy(t) is the Liouville right-sided fractional derivative of order α∈(0,1). We obtain some oscillation criteria for the equation by employing a generalized Riccati transformation technique. Some examples are given to illustrate the significance of our results.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Feng Gao ◽  
Chunmei Chi

In this paper, we made improvement on the conformable fractional derivative. Compared to the original one, the improved conformable fractional derivative can be a better replacement of the classical Riemann-Liouville and Caputo fractional derivative in terms of physical meaning. We also gave the definition of the corresponding fractional integral and illustrated the applications of the improved conformable derivative to fractional differential equations by some examples.


2018 ◽  
Vol 7 (1) ◽  
pp. 15 ◽  
Author(s):  
Mousa Ilie ◽  
Jafar Biazar ◽  
Zainab Ayati

Solving fractional differential equations have a prominent function in different science such as physics and engineering. Therefore, are different definitions of the fractional derivative presented in recent years. The aim of the current paper is to solve the fractional differential equation by a semi-analytical method based on conformable fractional derivative. Fractional Bratu-type equations have been solved by the method and to show its capabilities. The obtained results have been compared with the exact solution.


Author(s):  
Said Grace ◽  
Ravi Agarwal ◽  
Patricia Wong ◽  
Ağacık Zafer

AbstractIn this paper we initiate the oscillation theory for fractional differential equations. Oscillation criteria are obtained for a class of nonlinear fractional differential equations of the form $D_a^q x + f_1 (t,x) = v(t) + f_2 (t,x),\mathop {\lim }\limits_{t \to a} J_a^{1 - q} x(t) = b_1 $, where D aq denotes the Riemann-Liouville differential operator of order q, 0 < q ≤ 1. The results are also stated when the Riemann-Liouville differential operator is replaced by Caputo’s differential operator.


Sign in / Sign up

Export Citation Format

Share Document