scholarly journals Fair and Efficient Rate Allocation for Wireless-Powered Machine-Type Communication Networks

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Nanxing Liao ◽  
Guopeng Zhang ◽  
Jiansheng Qian ◽  
Deqiang Cheng ◽  
Kun Yang

This paper proposes a bargaining game theoretic rate allocation scheme for wireless-powered machine-type communications (MTCs). In the considered body area MTC network (MTCN), a battery-powered user equipment (UE) acting as the MTC gateway (MTCG) is responsible for collecting the information uploaded by in/on body wireless-powered MTC devices (MTCDs). By solving the Nash bargaining solution (NBS) of the proposed cooperative game, the minimum rate requirements of the MTCDs are satisfied. In addition, the network resource can be allocated to the MTCDs in a fair and efficient manner regarding the difference of their channel qualities. In comparison to other traditional resource allocation methods, the simulation results show that the proposed NBS-based method obtains a good tradeoff between the system efficiency and per-node fairness.

Author(s):  
Elias Yaacoub ◽  
Hakim Ghazzai ◽  
Mohamed-Slim Alouini

This chapter investigates the interplay between cooperative device-to-device (D2D) communications and green communications in LTE heterogeneous networks (HetNets). Two game theoretic concepts are studied and analyzed in order to perform dynamic HetNet base station (BS) on/off switching. The first approach is a coalition-based method whereas the second is based on the Nash bargaining solution. Afterwards, a method for coupling the BS on/off switching approach with D2D collaborative communications is presented and shown to lead to increased energy efficiency. The savings are additionally increased when a portion of the small cell BSs in a HetNet are powered by renewable energy sources. Different utility functions, modeling the game theoretic framework governing the energy consumption balance between the cellular network and the mobile terminals (MTs), are proposed and compared, and their impact on MT quality of service (QoS) is analyzed.


2017 ◽  
Vol 19 (01) ◽  
pp. 1750001
Author(s):  
Ilya Nikolaevskiy ◽  
Andrey Lukyanenko ◽  
Andrei Gurtov

The Nash Bargaining Solution (NBS) has been broadly suggested as an effective solution for the problem of fair allocation of multiple resources, namely bandwidth allocation in datacenters. In spite of being thoroughly studied, and provably strategy-proof for most scenarios, NBS-based allocation methods lack research on the strategic behavior of tenants in the case of proportionality of resource demands, which is common in datacenter workloads. We found that misbehavior is beneficial: by lying about bandwidth demands tenants can improve their allocations. We show that a sequence of selfish improvements leads to trivial demand vectors for all tenants. It essentially removes sharing incentives which are very important for datacenter networks. In this paper, we analytically prove that tenants can misbehave in 2- and 3- tenants cases. We show that misbehavior is possible in one recently proposed NBS-based allocation system if proportionality of demands is taken into account. Monte Carlo simulations were done for 2–15 tenants to show a misbehavior possibility and its impact on aggregated bandwidth. We propose to use another game-theoretic approach, namely Dominant Resource Fairness (DRF) to allocate bandwidth in the case of proportional demands. We show that this method performs significantly better than NBS after misbehavior.


Author(s):  
Elias Yaacoub ◽  
Hakim Ghazzai ◽  
Mohamed-Slim Alouini

This chapter investigates the interplay between cooperative device-to-device (D2D) communications and green communications in LTE heterogeneous networks (HetNets). Two game theoretic concepts are studied and analyzed in order to perform dynamic HetNet base station (BS) on/off switching. The first approach is a coalition-based method whereas the second is based on the Nash bargaining solution. Afterwards, a method for coupling the BS on/off switching approach with D2D collaborative communications is presented and shown to lead to increased energy efficiency. The savings are additionally increased when a portion of the small cell BSs in a HetNet are powered by renewable energy sources. Different utility functions, modeling the game theoretic framework governing the energy consumption balance between the cellular network and the mobile terminals (MTs), are proposed and compared, and their impact on MT quality of service (QoS) is analyzed.


Utilitas ◽  
2010 ◽  
Vol 22 (4) ◽  
pp. 447-473 ◽  
Author(s):  
MICHAEL MOEHLER

It is argued that the Nash bargaining solution cannot serve as a principle of distributive justice because (i) it cannot secure stable cooperation in repeated interactions and (ii) it cannot capture our moral intuitions concerning distributive questions. In this article, I propose a solution to the first problem by amending the Nash bargaining solution so that it can maintain stable cooperation among rational bargainers. I call the resulting principle the stabilized Nash bargaining solution. The principle defends justice in the form ‘each according to her basic needs and above this level according to her relative bargaining power’. In response to the second problem, I argue that the stabilized Nash bargaining solution can serve as a principle of distributive justice in certain situations where moral reasoning is reduced to instrumental reasoning. In particular, I argue that rational individuals would choose the stabilized Nash bargaining solution in Rawls’ original position.


2011 ◽  
Vol 187 ◽  
pp. 510-515
Author(s):  
Wei Liu ◽  
Jing Min Tang

In this paper, subcarrier and power allocation are jointly considered in a three-node symmetric cooperation orthogonal frequency-division multiple access uplink system. With the help of Nash bargaining solution, the dynamic subcarrier allocation scheme and the adaptive power allocation scheme are proposed for joint optimization. The joint resource allocation is decomposed and solved by dynamic subcarrier allocation algorithm and adaptive power allocation algorithm. Simulation results show the effectiveness of the proposed cooperative scheme.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2397
Author(s):  
Reinaldo Crispiniano Garcia ◽  
Javier Contreras ◽  
Matheus de Lima Barbosa ◽  
Felipe Silva Toledo ◽  
Paulo Vinicius Aires da Cunha

In electricity markets, bilateral contracts (BC) are used to hedge against price volatility in the spot market. Pricing these contracts requires scheduling from either the buyer or the seller aiming to achieve the highest profit possible. Since this problem includes different players, a Generation Company (GC) and an Electricity Supplier Company (ESC) are considered. The approaches to solve this problem include the Nash Bargaining Solution (NBS) equilibrium and the Raiffa–Kalai–Smorodinsky (RKS) bargaining solution. The innovation of this work is the implementation of an algorithm based on the RKS equilibrium to find a compromise strategy when determining the concessions to be made by the parties. The results are promising and show that the RKS approach can obtain better results compared to the Nash equilibrium method applied to a case study.


Sign in / Sign up

Export Citation Format

Share Document