scholarly journals Optimal High-Speed Railway Timetable by Stop Schedule Adjustment for Energy-Saving

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Dingjun Chen ◽  
Sihan Li ◽  
Junjie Li ◽  
Shaoquan Ni ◽  
Xiaolong Liu

Timetable optimization techniques offer opportunity for saving energy and hence reducing operational costs for high-speed rail services. The existing energy-saving timetable optimization is mainly concentrated on the train running state adjustment and the running time redistribution between two stations. Not only the adjustment space of timetables is limited, but also it is hard for the train to reach the optimized running state in reality, and it is difficult to get feasible timetable with running time redistribution between two stations for energy-saving. This paper presents a high-speed railway energy-saving timetable based on stop schedule optimization. Under the constraints of safety interval and stop rate, with the objective of minimizing the increasing energy consumption of train stops and the shortest travel time of trains, the high-speed railway energy-saving timetable optimization model is established. The fuzzy mathematics programming method is used to design an efficient algorithm. The proposed model and algorithm are demonstrated in the actual operation data of Beijing-Shanghai high-speed railway. The results show that the total operating energy consumption of the train is reduced by 3.7%, and the total travel time of the train is reduced by 11 minutes.

2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Dewei Li ◽  
Shishun Ding ◽  
Yizhen Wang

Train timetabling is crucial for passenger railway operation. Demand-oriented train timetable optimization by minimizing travel time plays an important role in both theory and practice. Most of the current researches of demand-oriented timetable models assume an idealized situation in which the service order is fixed and in which zero overtaking exists between trains. In order to extend the literature, this paper discusses the combinatorial effect of service order and overtaking by developing four mixed-integer quadratic programming timetabling models with different service order as well as overtaking conditions. With the objective of minimizing passengers’ waiting time and in-vehicle time, the models take five aspects as constraints, namely dwell time, running time, safety interval, overtaking, and capacity. All four models are solved by ILOG CPLEX; and the results, which are based on Shanghai-Hangzhou intercity high-speed rail data, show that either allowing overtaking or changing service order can effectively optimize the quality of timetable with respect to reducing the total passengers’ travel time. Although optimizing train overtaking and service order simultaneously can optimize the timetable more significantly, compared to overtaking, allowing the change of service order can help passengers save total travel time without extending the train travel time. Moreover, considering the computation effort, satisfying both of the conditions in the meantime, when optimizing timetable has not got a good cost benefit.


2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Li Wang ◽  
Yong Qin ◽  
Jie Xu ◽  
Limin Jia

A fuzzy optimization model based on improved symmetric tolerance approach is introduced, which allows for rescheduling high-speed railway timetable under unexpected interferences. The model nests different parameters of the soft constraints with uncertainty margin to describe their importance to the optimization purpose and treats the objective in the same manner. Thus a new optimal instrument is expected to achieve a new timetable subject to little slack of constraints. The section between Nanjing and Shanghai, which is the busiest, of Beijing-Shanghai high-speed rail line in China is used as the simulated measurement. The fuzzy optimization model provides an accurate approximation on train running time and headway time, and hence the results suggest that the number of seriously impacted trains and total delay time can be reduced significantly subject to little cost and risk.


2021 ◽  
Vol 13 (8) ◽  
pp. 4227
Author(s):  
Liwen Liu ◽  
Ming Zhang

There has been long and ongoing interest in the impacts of high-speed rail (HSR) on regional spatial development. Most existing studies, however, reported findings at relatively coarse geographic scales, i.e., at the prefecture-city or above level in the Chinese context. This paper presents the empirical evidence of HSR impacts from the county-level cities in China’s Mid-Yangtze River City-Cluster Region (MYRCCR). The study utilized rail time data and the socio-economic data for MYRCCR’s 185 county-level cities in the years of 2006 (without HSR) and 2014 (with HSR) and analyzed the impacts of HSR on inter-city travel times, accessibility, spatial inequality, and regional economic linkages among the MYRCCR cities. The results show that, from 2006 to 2014, HSR reduced city-to-city average travel time by 34.5% or 124 min and improved accessibility to all cities in the MYRCCR. HSR’s impacts on accessibility and spatial equality exhibited a scale-differentiated pattern. MYRCCR-wide, HSR transformed a pattern of spatial polarization towards the one of corridorization. Cities located on major HSR corridors became more balanced in 2014 than in 2006. Nevertheless, at the county-city level, the gap between cities with the most and the least accessibility gains was much greater than the gap between those with the largest and the smallest travel time savings. Attributable to HSR services, the intensity of economic linkage increased between MYRCCR cities, especially between the provincial capital cities and those on the major lines of the national HSR grid, which implies an emerging process towards territorial cohesion in MYRCCR. National, provincial, and local governments should consider transportation as well as non-transportation policies and measures to direct HSR impacts towards further enhanced spatial development and regional equality.


Urban Studies ◽  
2021 ◽  
pp. 004209802110178 ◽  
Author(s):  
Zheng Chang ◽  
Mi Diao

This study analyses the changes in intra-city housing values in response to improved inter-city connection brought by high-speed rail (HSR), using the opening of the Hangzhou–Fuzhou–Shenzhen Passenger Dedicated Line (HFSL) in Shenzhen, China, as an example. The opening of the HFSL and its integration into the local metro network at Shenzhen North Station provide exogenous intra-city variations in access to the surrounding economic mass. With a difference-in-differences approach, we find that the HFSL showed a negative local effect as housing values declined by 11.5%–13.3% in the proximity of Shenzhen North Station relative to areas further from the station after the opening, possibly due to the negative externalities of the HFSL. The HFSL effect can spread along the metro network and lead to, on average, a 7% appreciation of housing values around metro stations (network effect). The direction and strength of the network effect vary by metro travel time between Shenzhen North Station and metro stations. Housing values decreased by 7.7% around metro stations within 5–15 minutes of metro travel time but increased by 63.6%, 16.6% and 29.2% around metro stations within 15–25, 25–35 and 35–45 minutes of metro travel time to Shenzhen North Station, respectively. The HFSL effect on housing values diminishes when the rail travel time is above 45 minutes. We interpret these findings as evidence of the redistribution effect in the city related to HSR connection.


Author(s):  
Yun Zhang ◽  
Lianhuan Wei ◽  
Jiayu Li ◽  
Shanjun Liu ◽  
Yachun Mao ◽  
...  

More and more high-speed railway are under construction in China. The slow settlement along high-speed railway tracks and newly-built stations would lead to inhomogeneous deformation of local area, and the accumulation may be a threat to the safe operation of high-speed rail system. In this paper, surface deformation of the newly-built high-speed railway station as well as the railway lines in Shenyang region will be retrieved by time series InSAR analysis using multi-orbit COSMO-SkyMed images. This paper focuses on the non-uniform subsidence caused by the changing of local environment along the railway. The accuracy of the settlement results can be verified by cross validation of the results obtained from two different orbits during the same period.


2015 ◽  
Vol 6 (2) ◽  
pp. 87-109 ◽  
Author(s):  
Renato Redondi ◽  
Paolo Malighetti ◽  
Stefano Paleari

The objective of this work is to evaluate the accessibility of European municipalities by air transport. We focus on travels that typically require the use of air transport by computing the quickest paths between any pair of municipalities separated by more than 500 km. The total travel time includes three components: i) travel by car or High Speed Train to reach the origin airport, ii) travel by air from the origin airport to the destination airport, including waiting times when no direct flight is available and iii) travel by car or High Speed Train from the destination airport to the municipality of destination. For each territorial unit, we calculate the population-weighted average travel time to reach any other municipality in Europe.


2020 ◽  
Vol 165 ◽  
pp. 04075
Author(s):  
Qizhang Li ◽  
Yongliang Xie

Underground high-speed railway station is becoming more and more popular in recent years, due to its advantage in relieving the tense situation of urban construction land. HVAC (Heating, Ventilation and Air Conditioning) system of underground railway station consumes large energy, therefore it is necessary to find a way to decrease the energy consumption in stations. Reasonable ventilation and air organization are the basis of energy-saving design of environment control system in stations. The energy consumption could be reduced greatly by utilizing the piston wind properly. In the present work, airflow characteristics in the station are investigated when high-speed train is passing through the underground railway station with CCM+ software. Results show that piston wind has different effects on airflow in the platform when the high-speed train is running. However, the air velocity in the platform is always lower than 5 m/s. In order to analyse the effect of piston wind on the airflow in the platform in more detail, the velocities and temperatures at waiting line are extracted. The air velocity near two ends of platform is larger and the similar results could also be observed for temperatures.


2020 ◽  
Vol 2020 ◽  
pp. 1-22 ◽  
Author(s):  
Wenxin Li ◽  
Qiyuan Peng ◽  
Chao Wen ◽  
Shengdong Li ◽  
Xu Yan ◽  
...  

Optimizing to increase the utilization ratio of regenerative braking energy reduces energy consumption, and can be done without increasing the deviation of train running time in one circle. The latter entails that the train timetable is upheld, which guarantees that the demand for passenger transport services is met and the quality of services in the urban rail transit system is maintained. This study proposes a multi-objective optimization model for urban railways with timetable optimization to minimize the total energy consumption of trains while maximizing the quality of service. To this end, we apply the principles and ideas of calculus to reduce the power of the velocity in the train energy consumption model. This greatly simplifies the complexity of the optimization model. Then, considering the conflicting requirements of decision-makers, weight factors are added to the objective functions to reflect decision-makers’ preferences for energy-saving and the quality of service. We adopt the nondominated sorting genetic algorithm-II (NSGA-II) to solve the proposed model. A practical case study of the Yizhuang urban railway line in Beijing is conducted to verify the effectiveness of the proposed model and evaluate the advantages of the optimal energy saving timetable (OEST) in comparison to the optimal quality of service timetable (OQOST). The results showed that the OEST reduced total energy consumption by 8.72% but increased the deviation of trains running time in one circle by 728 s. The total energy consumption was reduced by 6.09%, but there was no increase in the deviation of train running time in one circle with the OQOST.


Sign in / Sign up

Export Citation Format

Share Document