scholarly journals Modeling and Experimental Study on Dynamic Characteristics of Dual-Mass Flywheel Torsional Damper

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Long Chen ◽  
Wen-ku Shi ◽  
Zhi-yong Chen

Theoretical modeling and experimental research are carried out on the dynamic torsional characteristics of a dual-mass flywheel (DMF) in this paper. Firstly, the structure and working principle of the DMF are analyzed. Secondly, the arc spring is analyzed by the discrete element method. For the different frictional torques in the working process, the linear fitting and equivalent energy methods are used to model the frictional torque under the dynamic condition of the arc spring. The fractional derivative model is used to model the viscous damping of DMF. Then, the parameter identification and model verification are carried out on the model, and the model error is analyzed. Finally, an experimental study on the dynamic torsional characteristics of DMF is carried out. The results demonstrate that the torsional stiffness of the DMF varies with the excitation amplitude and frequency. This modeling and test method can be used for structural design and performance prediction analysis of DMF.

Author(s):  
Omar Aboul-Enein ◽  
Yaping Jing ◽  
Roger Bostelman

Abstract Computation Tree Measurement Language (CTML) is a newly developed formal language that offers simultaneous model verification and performance evaluation measures. While the theory behind CTML has been established, the language has yet to be tested on a practical example. In this work, we wish to demonstrate the utility of CTML when applied to a real-world application based in manufacturing. Mobile manipulators may enable more flexible, dynamic workflows within industry. Therefore, an artifact-based performance measurement test method for mobile manipulator robots developed at the National Institute of Standards and Technology was selected for evaluation. Contributions of this work include the modeling of robot tasks implemented for the performance measurement test using Petri nets, as well as the formulation and execution of sample queries using CTML. To compare the numerical results, query support, ease of implementation, and empirical runtime of CTML to other temporal logics in such applications, the queries were re-formulated and evaluated using the PRISM Model Checker. Finally, a discussion is included that considers future extensions of this work, relative to other existing research, that could potentially enable the integration of CTML with Systems Modeling Language (SysML) and Product Life-cycle Management (PLM) software solutions.


Sign in / Sign up

Export Citation Format

Share Document