scholarly journals Solution to the Problem of a Mass Traveling on a Taut String via Integral Equation

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
M. Ferretti ◽  
A. Luongo

The problem of a massive taut string, traveled by a heavy point mass, moving with an assigned law, is formulated in a linear context. Displacements are assumed to be transverse, and the dynamic tension is neglected. The equations governing the moving boundary problem are derived via a variational principle, in which the geometric compatibility between the point mass and the string is enforced via a Lagrange multiplier, having the meaning of transverse reactive force. The equations are rearranged in the form of a unique Volterra integral equation in the reactive force, which is solved numerically. A classical Galerkin solution is implemented for comparison. Numerical results throw light on the physics of the phenomenon and confirm the effectiveness of the algorithm.

1990 ◽  
Vol 57 (1) ◽  
pp. 50-56 ◽  
Author(s):  
Z. Dursunkaya ◽  
S. Nair

The heat conduction and the moving solid-liquid interface in a finite region is studied numerically. A Fourier series expansion is used in both phases for spatial temperature distribution, and the differential equations are converted to an infinite number of ordinary differential equations in time. These equations are solved iteratively for the interface location as well as for the temperature distribution. The results are compared with existing solutions for low Stefan numbers. New results are presented for higher Stefan numbers for which solutions are unavailable.


Sign in / Sign up

Export Citation Format

Share Document