scholarly journals The Connected Detour Numbers of Special Classes of Connected Graphs

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Ahmed M. Ali ◽  
Ali A. Ali

Simple finite connected graphs G=V,E of p≥2 vertices are considered in this paper. A connected detour set of G is defined as a subset S⊆V such that the induced subgraph GS is connected and every vertex of G lies on a u−v detour for some u,v∈S. The connected detour number cdnG of a graph G is the minimum order of the connected detour sets of G. In this paper, we determined cdnG for three special classes of graphs G, namely, unicyclic graphs, bicyclic graphs, and cog-graphs for Cp, Kp, and Km,n.

10.37236/434 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Jianxi Li ◽  
Ji-Ming Guo ◽  
Wai Chee Shiu

The algebraic connectivity of a graph $G$ is the second smallest eigenvalue of its Laplacian matrix. Let $\mathscr{B}_n$ be the set of all bicyclic graphs of order $n$. In this paper, we determine the last four bicyclic graphs (according to their smallest algebraic connectivities) among all graphs in $\mathscr{B}_n$ when $n\geq 13$. This result, together with our previous results on trees and unicyclic graphs, can be used to further determine the last sixteen graphs among all connected graphs of order $n$. This extends the results of Shao et al. [The ordering of trees and connected graphs by their algebraic connectivity, Linear Algebra Appl. 428 (2008) 1421-1438].


Filomat ◽  
2016 ◽  
Vol 30 (5) ◽  
pp. 1203-1211 ◽  
Author(s):  
Yingxue Zhu ◽  
Lihua You ◽  
Jieshan Yang

In [1], Abdo and Dimitov defined the total irregularity of a graph G=(V,E) as irrt(G)=1/2 ?u,v?V|dG(u)-dG(v)|, where dG(u) denotes the vertex degree of a vertex u ? V. In this paper, we investigate the minimal total irregularity of the connected graphs, determine the minimal, the second minimal, the third minimal total irregularity of trees, unicyclic graphs, bicyclic graphs on n vertices, and propose an open problem for further research.


2012 ◽  
Vol 04 (04) ◽  
pp. 1250061 ◽  
Author(s):  
SOMNATH PAUL

Bicyclic graphs are connected graphs in which the number of edges equals the number of vertices plus one. Let Pp+1 = x1x2⋯xp+1, Pt+1 = y1y2⋯yt+1 and Pq+1 = z1z2⋯zq+1 be three vertex-disjoint paths. Identifying the initial vertices as u0 and the terminal vertices as v0, the resultant graph, denoted by θ(p; t; q), is called a θ-graph. Let [Formula: see text] be the class of all bicyclic graphs on n vertices, which contain a θ-graph as an induced subgraph. In this paper, we study the distance spectral radius of bicyclic graphs in [Formula: see text], and determine the graph with the largest distance spectral radius.


Author(s):  
Shamaila Yousaf ◽  
Akhlaq Ahmad Bhatti

The total irregularity index of a graph [Formula: see text] is defined by Abdo et al. [H. Abdo, S. Brandt and D. Dimitrov, The total irregularity of a graph, Discrete Math. Theor. Comput. Sci. 16 (2014) 201–206] as [Formula: see text], where [Formula: see text] denotes the degree of a vertex [Formula: see text]. In 2014, You et al. [L. H. You, J. S. Yang and Z. F. You, The maximal total irregularity of unicyclic graphs, Ars Comb. 114 (2014) 153–160.] characterized the graph having maximum [Formula: see text] value among all elements of the class [Formula: see text] (Unicyclic graphs) and Zhou et al. [L. H. You, J. S. Yang, Y. X. Zhu and Z. F. You, The maximal total irregularity of bicyclic graphs, J. Appl. Math. 2014 (2014) 785084, http://dx.doi.org/10.1155/2014/785084 ] characterized the graph having maximum [Formula: see text] value among all elements of the class [Formula: see text] (Bicyclic graphs). In this paper, we characterize the aforementioned graphs with an alternative but comparatively simple approach. Also, we characterized the graphs having maximum [Formula: see text] value among the classes [Formula: see text] (Tricyclic graphs), [Formula: see text] (Tetracyclic graphs), [Formula: see text] (Pentacyclic graphs) and [Formula: see text] (Hexacyclic graphs).


2019 ◽  
Vol 19 (04) ◽  
pp. 2050068
Author(s):  
Hezan Huang ◽  
Bo Zhou

The distance spectral radius of a connected graph is the largest eigenvalue of its distance matrix. For integers [Formula: see text] and [Formula: see text] with [Formula: see text], we prove that among the connected graphs on [Formula: see text] vertices of given maximum degree [Formula: see text] with at least one cycle, the graph [Formula: see text] uniquely maximizes the distance spectral radius, where [Formula: see text] is the graph obtained from the disjoint star on [Formula: see text] vertices and path on [Formula: see text] vertices by adding two edges, one connecting the star center with a path end, and the other being a chord of the star.


2013 ◽  
Vol 22 (5) ◽  
pp. 733-748 ◽  
Author(s):  
SHINYA FUJITA ◽  
MICHITAKA FURUYA ◽  
KENTA OZEKI

Let $\mathcal{H}$ be a set of connected graphs. A graph G is said to be $\mathcal{H}$-free if G does not contain any element of $\mathcal{H}$ as an induced subgraph. Let $\mathcal{F}_{k}(\mathcal{H})$ be the set of k-connected $\mathcal{H}$-free graphs. When we study the relationship between forbidden subgraphs and a certain graph property, we often allow a finite exceptional set of graphs. But if the symmetric difference of $\mathcal{F}_{k}(\mathcal{H}_{1})$ and $\mathcal{F}_{k}(\mathcal{H}_{2})$ is finite and we allow a finite number of exceptions, no graph property can distinguish them. Motivated by this observation, we study when we obtain a finite symmetric difference. In this paper, our main aim is the following. If $|\mathcal{H}|\leq 3$ and the symmetric difference of $\mathcal{F}_{1}(\{H\})$ and $\mathcal{F}_{1}(\mathcal{H})$ is finite, then either $H\in \mathcal{H}$ or $|\mathcal{H}|=3$ and H=C3. Furthermore, we prove that if the symmetric difference of $\mathcal{F}_{k}(\{H_{1}\})$ and $\mathcal{F}_{k}(\{H_{2}\})$ is finite, then H1=H2.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Young Chel Kwun ◽  
Hafiz Mutee ur Rehman ◽  
Muhammad Yousaf ◽  
Waqas Nazeer ◽  
Shin Min Kang

The aim of this report to solve the open problem suggested by Chen et al. We study the graph entropy with ABC edge weights and present bounds of it for connected graphs, regular graphs, complete bipartite graphs, chemical graphs, tree, unicyclic graphs, and star graphs. Moreover, we compute the graph entropy for some families of dendrimers.


2016 ◽  
Vol 31 ◽  
pp. 232-243 ◽  
Author(s):  
Guihai Yu ◽  
Lihua Feng ◽  
Hui Qu

In this paper, the signed graphs with one positive eigenvalue are characterized, and the signed graphs with pendant vertices having exactly two positive eigenvalues are determined. As a consequence, the signed trees, the signed unicyclic graphs and the signed bicyclic graphs having one or two positive eigenvalues are characterized.


2016 ◽  
Vol 09 (02) ◽  
pp. 1650041
Author(s):  
M. R. Chithra ◽  
A. Vijayakumar

Let [Formula: see text] be a family of connected graphs. A spanning subgraph [Formula: see text] of [Formula: see text] is called an [Formula: see text]-factor (component factor) of [Formula: see text] if each component of [Formula: see text] is in [Formula: see text]. In this paper, we study the component factors of the Cartesian product of graphs. Here, we take [Formula: see text] and show that every connected graph [Formula: see text] has a [Formula: see text]-factor where [Formula: see text] and [Formula: see text] is the maximum degree of an induced subgraph [Formula: see text] in [Formula: see text] or [Formula: see text]. Also, we characterize graphs [Formula: see text] having a [Formula: see text]-factor.


Sign in / Sign up

Export Citation Format

Share Document