scholarly journals Biomechanical Effects of Different Auxiliary-Aligner Designs for the Extrusion of an Upper Central Incisor: A Finite Element Analysis

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
R. Savignano ◽  
R. Valentino ◽  
A. V. Razionale ◽  
A. Michelotti ◽  
S. Barone ◽  
...  

Aim. To evaluate the biomechanical effects of four different auxiliary-aligner combinations for the extrusion of a maxillary central incisor and to define the most effective design through finite element analysis (FEA). Materials and Methods. A full maxillary arch (14 teeth) was modelled by combining two different imaging techniques: cone beam computed tomography and surface-structured light scan. The appliance and auxiliary element geometries were created by exploiting computer-aided design (CAD) procedures. The reconstructed digital models were imported within the finite element solver (Ansys® 17). For the extrusion movement, the authors compared the aligner without an attachment with three auxiliary-aligner designs: a rectangular palatal attachment, a rectangular buccal attachment, and an ellipsoid buccal attachment. The resulting force-moment (MF) system delivered by the aligner to the target tooth and the tooth displacement were calculated for each scenario. Results. The maximum tooth displacement along the z-axis (0.07 mm) was obtained with the rectangular palatal attachment, while the minimum (0.02 mm) was obtained without any attachments. With the ellipsoid attachment, the highest undesired moments Mx and My were found. The rectangular palatal attachment showed the highest Fz (2.0 N) with the lowest undesired forces (Fx = 0.4 N; Fy = −0.2 N). Conclusions. FEA demonstrated that the rectangular palatal attachment can improve the effectiveness of the appliance for the extrusion of an upper central incisor.

2018 ◽  
Vol 7 (4.27) ◽  
pp. 148
Author(s):  
Wan Muhammad Syahmi Wan Fauzi ◽  
Abdul Rahman Omar ◽  
Helmi Rashid

Recently, studies concerning motorcycle have been an overwhelming area of research interest. As an alternative to the real world assessment, researchers have utilized motorcycle simulator as a workstation to conduct studies in the motorcycle niche area. This paper deal with the development of a new motorcycle simulator named Semi-Interface Motorcycle Simulator (SiMS). Combination of Computer Aided Design (CAD) and Finite Element Analysis (FEA) software made it possible to design and simulates the motorcycle simulator’s conceptual design before being fabricated. The SiMS setup not only provides a near-to-real and immerse motorcycle riding experience on a super sport motorcycle model, but it also allows safer high speed motorcycle simulations to be conducted in a controlled environment that is portable and ergonomically easier to transport to various venues.  


2015 ◽  
Vol 757 ◽  
pp. 69-73 ◽  
Author(s):  
Zhi Qing Guo ◽  
Yan Jiao Li ◽  
Chang Jiang Liu ◽  
Qiu Juan Lv ◽  
Zhong Bao Qin

This article make a research based on a certain type of heavy vehicle, In the research, we have made some analyses on structure reliability of the heavy truck with the assistance of some simulation platforms, such as computer aided design, finite element analysis, etc.. Based on the establishment of a correct finite element analysis model, analysis method is mainly about some research of the frame, such as typical working conditions of static analysis and modal analysis. Through these work, we can have a better understanding about the static and dynamic characteristic of the frame, so that we can find out the advantages and disadvantages of the car.


2020 ◽  
Vol 4 (1) ◽  
pp. 022-027
Author(s):  
Agarwal Samarth Kumar ◽  
Mittal Reena ◽  
Singhal Romil ◽  
Hasan Sarah ◽  
Chaukiyal Kanchan

Sign in / Sign up

Export Citation Format

Share Document