scholarly journals MHD Slip Flow of CNT-Ethylene Glycol Nanofluid due to a Stretchable Rotating Disk with Cattaneo–Christov Heat Flux Model

2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Ayele Tulu ◽  
Wubshet Ibrahim

This article deals with carbon nanoliquid flow due to stretchable rotating disk with the effect of Cattaneo–Christov heat flux model. Both SWCNTs and MWCNTs are considered with ethylene glycol as the base fluid. The effects of nanoparticle volume friction, normally applied magnetic field, stretching factor, velocity, and thermal slip factors are examined. The fundamental flow governing equations are transformed into dimensionless system of coupled nonlinear ordinary differential equations, and they are solved numerically using spectral quasi-linearization method (SQLM). Employing graphs and tables, the results of velocity and temperature fields as well as skin friction coefficient and local heat transfer rate are analyzed and presented via embedded parameters. The results reveal that higher velocity fields and lower temperature fields are noticed in the MWCNT nanofluids than SWCNT nanofluids. The higher incidence of magnetic field improves the thermal boundary layer thickness. A growth in velocity slip factor reduces the momentum boundary layer thickness of the nanoliquid flow. Generally, radial stretching of the disk is helpful in improving the cooling process of the rotating disk in practical applications.

2020 ◽  
Vol 548 ◽  
pp. 123991 ◽  
Author(s):  
M. Gnaneswara Reddy ◽  
M.V. V. N.L. Sudha Rani ◽  
K. Ganesh Kumar ◽  
B.C. Prasannakumar ◽  
Ali J. Chamkha

2018 ◽  
Vol 388 ◽  
pp. 146-157 ◽  
Author(s):  
K. Gangadhar ◽  
Chintalapudi Suresh Kumar ◽  
S. Mohammed Ibrahim ◽  
Giulio Lorenzini

The study observes the flow and heat transfer in upper-convected Maxwell fluid over a rapidly stretching surface with viscous dissipation. Cattaneo-Christov heat flux model has been used in the preparation of the energy equation. The model is used in guessing the impacts of thermal relaxation time over boundary layer. Similarity method has been used to keep normal the supervising boundary layer equations. Local similarity solutions have been obtained through spectral relaxation method. The fluid temperature has a relation with thermal relaxation time inversely and our calculations have shown the same.. In addition the fluid velocity is a receding activity of the fluid relaxation time. A comparative study of Fourier’s law and the Cattaneo-Christov’s law has been done and inserted in this.


2011 ◽  
Vol 15 (suppl. 2) ◽  
pp. 205-220 ◽  
Author(s):  
Iftikhar Ahmad ◽  
Manzoor Ahmed ◽  
Zaheer Abbas ◽  
Muhammad Sajid

In this study, we present a steady three-dimensional magnetohydrodynamic (MHD) flow and heat transfer characteristics of a viscous fluid due to a bidirectional stretching sheet in a porous medium. The heat transfer analysis has been carried out for two heating processes namely (i) the prescribed surface temperature (PST) and (ii) prescribed surface heat flux (PHF). In addition the heat transfer rate varies along the surface. The similarity solution of the governing boundary layer partial differential equations is developed by employing homotopy analysis method (HAM). The quantities of interest are velocity, temperature, skin-friction and wall heat flux. The results obtained are presented through graphs and tabular data. It is observed that both velocity and boundary layer thickness decreases by increasing the porosity and magnetic field. This shows that application of magnetic and porous medium cause a control on the boundary layer thickness. Moreover, the results are also compared with the existing values in the literature and found in excellent agreement.


2016 ◽  
Vol 25 (1) ◽  
pp. 014701 ◽  
Author(s):  
F M Abbasi ◽  
M Mustafa ◽  
S A Shehzad ◽  
M S Alhuthali ◽  
T Hayat

Author(s):  
Joshua B. Anderson ◽  
David G. Bogard ◽  
Thomas E. Dyson ◽  
Zachary Webster

The injection of film cooling can have a strong impact on the heat transfer coefficient (HTC) between the overflowing freestream gas and the cooled surface. This study investigated the influence of approach flow characteristics, including the boundary layer thickness and character (laminar and turbulent), as well as the approach flow Reynolds number, on the HTC. The influence of these parameters was previously unreported in the open film cooling literature. The figure of merit for this study was the HTC augmentation, that is the ratio of heat transfer coefficients for a cooled vs. uncooled surface. For this work, a direct measurement of the heat transfer coefficient was made, using a heated foil surface which provided a known wall heat flux. Generally for this type of measurement, a flux foil is placed downstream of the coolant hole. However, for this experimental program a heat flux foil was also placed upstream of the film cooling holes, in order to generate an upstream thermal boundary layer which would be more representative of actual engine conditions. Such a configuration has rarely been seen in published studies. An open-literature shaped-hole design was used, known as the 7-7-7 hole, in order to compare with existing results in the literature. A variety of blowing conditions were tested from M = 0.5–3.0. Two elevated density ratios of DR = 1.20 and DR = 1.80 were used. High-resolution IR thermography was used for these measurements, providing a highly-accurate and spatially-resolved measurement of HTC augmentation. The results indicated that turbulent boundary layer thickness had a modest effect on HTC augmentation, whereas a very high level of augmentation was observed for a laminar approach boundary layer. The presence of upstream heating greatly increased the HTC augmentation in the near-hole region, although these effects died out by 10–15 diameters from the holes.


Sign in / Sign up

Export Citation Format

Share Document