scholarly journals A Visible-NIR Responsive Dye-Sensitized Solar Cell Based on Diatom Frustules and Cosensitization of Photopigments from Diatom and Purple Bacteria

2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Xixiang Xiao ◽  
Xiaobo Zhang ◽  
Haiyang Su ◽  
Shicheng Chen ◽  
Zhihui He ◽  
...  

Diatoms exhibit high solar energy harvesting efficiency due to their remarkably organized, hierarchical micro/nanoporous, light-trapping, and scattering frustules. At present, few studies focus on cosensitization of natural near-infrared dye to expand the spectral response of dye-sensitized solar cells. In this study, the diatom frustule-TiO2 (12 : 5) composite film was prepared and assembled it on the TiO2 electrode. Compared to the single TiO2 layer film, diatom frustule-TiO2 (12 : 5) composite film sensitized by diatom’s dye showed the conversion efficiency of 0.719%. To expand the light-harvesting response to near-infrared region spectra, the cosensitized dyes were used to fabricate the visible-near-infrared responsive dye-sensitized solar cells. The cosensitization diatom frustule-TiO2 (12 : 5) composite film exhibited two distinct absorption bands in the near-infrared region and reached a higher conversion efficiency of 1.321%, which was approximately 1.4 or 1.7 folds higher than that of cosensitization double-TiO2 film or single TiO2 layer film, respectively, and approximately 3.7 or 1.7 folds higher than that of the single TiO2 layer film sensitized by diatom dye or purple bacterial dye, respectively. The results showed that the combination between diatom frustule-TiO2 with cosensitization natural dyes could significantly improve the photoelectric performance of visible-near-infrared responsive dye-sensitized solar cells.

2020 ◽  
Vol 5 (9) ◽  
pp. 1477-1490 ◽  
Author(s):  
Md Abdus Sabuj ◽  
Neeraj Rai

Open-shell dyes with small diradical character (y < 0.10) lead to absorption in the near-infrared region.


2014 ◽  
Vol 1667 ◽  
Author(s):  
Yen-Chen Shih ◽  
Hsiao-Li Lin ◽  
King-Fu Lin

ABSTRACTTo provide a counter electrode with lower-cost and simple production method for dye-sensitized solar cells (DSSCs), we developed polyaniline/graphene nanoplatelet/multi-walled carbon nanotube (PANi/GNP/MWCNT) composite films growing on glass substrates by using chemical/electrochemical deposition method and on fluorine-doped tin oxide (FTO)/glass substrates by using electrochemical deposition method respectively. A proper weight ratio of PANi/GNP/MWCNT (1/0.0030/0.0045) composite film depositing on FTO substrate as counter electrode with sheet resistance of 8.25±0.13 Ω/sq for DSSCs yielded power conversion efficiency (PCE) up to 7.45±0.08%, which has potential to replace the conventional Pt cell (7.62±0.07%). In addition, we also fabricated the DSSCs composed of a proper weight ratio of PANi/GNP/MWCNTs (1/0.0045/0.0060) composite film depositing on glass substrate as counter electrode. The sheet resistance of resulting composite film was 59.34±12.34 Ω/sq. These solar cells with FTO-free counter electrode exhibited a PCE of 2.90±0.09%.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Thomas Geiger ◽  
Iuliia Schoger ◽  
Daniel Rentsch ◽  
Anna Christina Véron ◽  
Frédéric Oswald ◽  
...  

Seven unsymmetrical heptamethine dyes with carboxylic acid functionality were synthesized and characterized. These near-infrared dyes exhibit outstanding photophysical properties depending on their heterocyclic moieties and molecular structure. As proof of principle, the dyes were used as photosensitizers in dye-sensitized solar cells. Using the most promising dye, an overall conversion efficiency of 1.22% and an almost colorless solar cell were achieved.


2013 ◽  
Vol 60 ◽  
pp. 672-678 ◽  
Author(s):  
Claudio Magistris ◽  
Stefano Martiniani ◽  
Nadia Barbero ◽  
Jinhyung Park ◽  
Caterina Benzi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document