scholarly journals Mathematical Formulation of Feedback Linearizing Control of Doubly Fed Induction Generator Including Magnetic Saturation Effects

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Julia Tholath Jose ◽  
Adhir Baran Chattopadhyay

This paper proposes a control methodology based on feedback linearization for a doubly fed induction generator (DFIG) incorporating the magnetic saturation. The feedback linearization algebraically converts a nonlinear system model into a linear model, allowing the use of linear control techniques. Feedback linearization control depends on the model of the system and is therefore sensitive to parameter variations. The doubly fed induction generator (DFIG) operating under the magnetic saturation conditions results in the nonlinear variation of magnetizing inductance, which affects the performance of the control algorithm. From this stand point, on the basis of the dynamic model of the doubly fed induction generator considering magnetic saturation, the feedback linearizing control technique has been formulated. The mathematical model of the doubly fed induction generator, integrating the magnetic saturation has been formulated in the stator flux-oriented reference frame with rotor current and stator magnetizing current as state variables. Simulation studies demonstrate that the inclusion of magnetic saturation in the feedback linearization control of the doubly fed induction generator model increases its accuracy and results in a more efficient and reliable synthesis of the control algorithm.

Author(s):  
Ihedrane Yasmine ◽  
El Bekkali Chakib ◽  
Bossoufi Badre

<span lang="EN-US">The following article presents the control of the power generated by the Doubly Fed Induction Generator, integrated into the wind system, whose rotor is linked to the power converters (Rotor Side Convert (RSC) and Grid Side Converter (GSC)) interfaced by the DC-BUS and connected to the grid via a filter (Rf, Lf) in order to obtain an optimal power to the grid and to ensure system stability. The objective of this study is to understand and to make the comparison between Sliding mode Control technique and the Flux Oriented Control in order to control the Doubly Fed Induction Generator powers exchanged with the grid, it also aims at maintaining the DC-BUS voltage constant and a unit power factor at the grid connection point.The results of simulation show the performance of the Sliding mode Control in terms of monitoring, and robustness with regard to the parametric variations, compared to the Flux Oriented Control. The performance of the systems was tested and compared with the use of MATLAB/Simulink software.</span>


Sign in / Sign up

Export Citation Format

Share Document