scholarly journals Stochastic Exponential Stabilization for Markov Jump Neural Networks with Time-varying Delays via Adaptive Event-Triggered Impulsive Control

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Xiaoman Liu ◽  
Haiyang Zhang ◽  
Tao Wu ◽  
Jinlong Shu

This paper focuses on the exponential stabilization problem for Markov jump neural networks with Time-varying Delays (TDs). Firstly, we provide a new Free-matrix-based Exponential-type Integral Inequality (FMEII) containing the information of attenuation exponent, which is helpful to reduce the conservativeness of stability criteria. To further save control cost, we introduce a sample-based Adaptive Event-triggered Impulsive Control (AEIC) scheme, in which the trigger threshold is adaptively varied with the sampled state. By fully considering the information about sampled state, TDs, and Markov jump parameters, a suitable Lyapunov–Krasovskii functional is constructed. With the virtue of FMEII and AEIC scheme, some novel stabilization criteria are presented in the form of linear matrix inequalities. At last, two numerical examples are given to show the validity of the obtained results.

2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
W. Weera ◽  
P. Niamsup

The problem of exponential stabilization of neutral-type neural networks with various activation functions and interval nondifferentiable and distributed time-varying delays is considered. The interval time-varying delay function is not required to be differentiable. By employing new and improved Lyapunov-Krasovskii functional combined with Leibniz-Newton’s formula, the stabilizability criteria are formulated in terms of a linear matrix inequalities. Numerical examples are given to illustrate and show the effectiveness of the obtained results.


2017 ◽  
Vol 10 (02) ◽  
pp. 1750027 ◽  
Author(s):  
Wei Zhang ◽  
Chuandong Li ◽  
Tingwen Huang

In this paper, the stability and periodicity of memristor-based neural networks with time-varying delays are studied. Based on linear matrix inequalities, differential inclusion theory and by constructing proper Lyapunov functional approach and using linear matrix inequality, some sufficient conditions are obtained for the global exponential stability and periodic solutions of memristor-based neural networks. Finally, two illustrative examples are given to demonstrate the results.


2015 ◽  
Vol 742 ◽  
pp. 399-403
Author(s):  
Ya Jun Li ◽  
Jing Zhao Li

This paper investigates the exponential stability problem for a class of stochastic neural networks with leakage delay. By employing a suitable Lyapunov functional and stochastic stability theory technic, the sufficient conditions which make the stochastic neural networks system exponential mean square stable are proposed and proved. All results are expressed in terms of linear matrix inequalities (LMIs). Example and simulation are presented to show the effectiveness of the proposed method.


2018 ◽  
Vol 2018 ◽  
pp. 1-25
Author(s):  
Weiping Wang ◽  
Meiqi Wang ◽  
Xiong Luo ◽  
Lixiang Li ◽  
Wenbing Zhao

This paper is concerned with the passivity problem of memristive bidirectional associative memory neural networks (MBAMNNs) with probabilistic and mixed time-varying delays. By applying random variables with Bernoulli distribution, the information of probability time-varying delays is taken into account. Furthermore, we consider the probability distribution of the variation and the extent of the delays; therefore, the results derived are less conservative than in the existing papers. In particular, the leakage delays as well as distributed delays are all taken into consideration. Based on appropriate Lyapunov-Krasovskii functionals (LKFs) and some useful inequalities, several conditions for passive performance are established in linear matrix inequalities (LMIs). Finally, numerical examples are given to demonstrate the feasibility of the presented theories, and the results reveal that the probabilistic and mixed time-varying delays have an unstable influence on the system and should not be ignored.


2012 ◽  
Vol 1 (2) ◽  
pp. 1-14 ◽  
Author(s):  
Magdi S. Mahmoud ◽  
Fouad M. AL Sunni

A global exponential stability method for a class of discrete time recurrent neural networks with interval time-varying delays and norm-bounded time-varying parameter uncertainties is developed in this paper. The method is derived based on a new Lyapunov-Krasovskii functional to exhibit the delay-range-dependent dynamics and to compensate for the enlarged time-span. In addition, it eliminates the need for over bounding and utilizes smaller number of LMI decision variables. Effective solutions to the global stability problem are provided in terms of feasibility-testing of parameterized linear matrix inequalities (LMIs). Numerical examples are presented to demonstrate the potential of the developed technique.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
M. J. Park ◽  
O. M. Kwon ◽  
E. J. Cha

This paper deals with the problem of stability analysis for generalized neural networks with time-varying delays. With a suitable Lyapunov-Krasovskii functional (LKF) and Wirtinger-based integral inequality, sufficient conditions for guaranteeing the asymptotic stability of the concerned networks are derived in terms of linear matrix inequalities (LMIs). By applying the proposed methods to two numerical examples which have been utilized in many works for checking the conservatism of stability criteria, it is shown that the obtained results are significantly improved comparing with the previous ones published in other literature.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Shu Lv ◽  
Junkang Tian ◽  
Shouming Zhong

This paper concerns the problem of delay-dependent stability criteria for recurrent neural networks with time varying delays. By taking more information of states and activation functions as augmented vectors, a new class of the Lyapunov functional is proposed. Then, some less conservative stability criteria are obtained in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are given to illustrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document