Synchronisation of multiple neural networks via event‐triggered time‐varying delay hybrid impulsive control

Author(s):  
Xiaoli Ruan ◽  
Chen Xu ◽  
Jianwen Feng ◽  
Jingyi Wang ◽  
Yi Zhao
Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yao Xu ◽  
Renren Wang ◽  
Hongqian Lu ◽  
Xingxing Song ◽  
Yahan Deng ◽  
...  

This paper discusses the adaptive event-triggered synchronization problem of a class of neural networks (NNs) with time-varying delay and actuator saturation. First, in view of the limited communication channel capacity of the network system and unnecessary data transmission in the NCSs, an adaptive event-triggered scheme (AETS) is introduced to reduce the network load and improve network utilization. Second, under the AETS, the synchronization error model of the delayed master-slave synchronization system is constructed with actuator saturation. Third, based on Lyapunov–Krasovskii functional (LKF), a new sufficient criterion to guarantee the asymptotic stability of the synchronization error system is derived. Moreover, by solving the stability criterion expressed in the form of a set of linear matrix inequalities (LMIs), some necessary parameters of the system are obtained. At last, two examples are expressed to demonstrate the feasibility of this method.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Lei Ding ◽  
Hong-Bing Zeng ◽  
Wei Wang ◽  
Fei Yu

This paper investigates the stability of static recurrent neural networks (SRNNs) with a time-varying delay. Based on the complete delay-decomposing approach and quadratic separation framework, a novel Lyapunov-Krasovskii functional is constructed. By employing a reciprocally convex technique to consider the relationship between the time-varying delay and its varying interval, some improved delay-dependent stability conditions are presented in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to show the merits and the effectiveness of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document