scholarly journals Analytical Solution for Lateral-Torsional Buckling of Concrete-Filled Tubular Flange Girders with Torsional Bracing

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Yingchun Liu ◽  
Zhaoming Hang ◽  
Wenfu Zhang ◽  
Keshan Chen ◽  
Jing Ji

Concrete-filled tubular flange girders have been used in bridges, and torsional bracings are widely used in them to increase the lateral-torsional buckling strength. This article proposes an analytical solution for the lateral-torsional buckling (LTB) of concrete-filled tubular flange steel girders with torsional bracing under a concentrated load. The modal trial functions of lateral displacement and the torsional angle are expressed by the first six terms of the trigonometric function. By introducing dimensionless parameters, the variational solution of energy for the buckling equation of the LTB of the girders is obtained, and the formula for the dimensionless critical moment of its LTB is derived using 1stOpt based on 32,550 data sets. Compared with the finite element method, the proposed critical formula is highly accurate and can be applied to engineering design. Finally, parametric studies were conducted on the effects of the stiffness of torsional bracing, the span of the girder, and the flange steel ratio.

2013 ◽  
Vol 676 ◽  
pp. 170-174
Author(s):  
Ju Tao Kuang ◽  
Ai Rong Liu ◽  
Qi Ca Yu ◽  
Jiang Dong Deng

By the setting torsional and lateral displacement function of sidewise buckling of two-hinged circular arch under concentrated force, the single-arch structure's bending, torsional deformation and external force potential can be constructed. An analytical solution for the lateral critical buckling load of two-hinged arch is first deduced by using the energy method; the results are also compared and analyzed by the finite element method. The results show that the analytical solution of single arch’s lateral critical buckling load is in good agreement with the finite element numerical solution, and the validity of the formula is proven.


2015 ◽  
Vol 797 ◽  
pp. 3-10 ◽  
Author(s):  
Karolina Brzezińska ◽  
Roman Bijak

The paper presents a computational analysis of the effect constructional details of coped connections, assumed to be a fork support in calculations, on the critical LTB moment values. On the basis of analytical formulas by Lindner [1], a formula, having a simple form, was derived for the reduction factor rn for the critical LTB moment. The parameters for the formula were presented in a tabular form, taking into account the beam section (IPE/HEA), the type of beam to end-plate connection (Types 1-3), the load type (q / P) and the way the load is applied (top / bottom flange). The correctness of the derived formula was validated on the basis of the analytical results and the Finite Element Method results obtained with the Abaqus/CAE software. In the program, the beam geometric dimensions and connections were represented as volumetric finite elements. Additionally, the dimensions of the end-plate for IPE and HEA section series were arranged in a systematic manner following the British catalogue.


Sign in / Sign up

Export Citation Format

Share Document