scholarly journals A Prediction Method for Acoustic Intensity Vector Field of Elastic Structure in Shallow Water Waveguide

2020 ◽  
Vol 2020 ◽  
pp. 1-23
Author(s):  
Wenbo Wang ◽  
Desen Yang ◽  
Jie Shi

Compared with scalar sound field, vector sound field explained the spatial structure of sound field better since it not only presents the sound energy distribution but also describes the sound energy flow characteristics. Particularly, with more complicated interaction among different wavefronts, the vector sound field characteristics of an elastic structure in a shallow water waveguide are worthy of studying. However, there is no reliable prediction method for the vector sound field of an elastic structure with a high efficiency in a shallow water waveguide. To solve the problem, transfer functions in the waveguide have been modified with some approximations to apply for the vector sound field prediction of elastic structures in shallow water waveguides. The method is based on the combined wave superposition method (CWSM), which has been proved to be efficient for predicting scalar sound field. The rationality of the approximations is validated with simulations. Characteristics of the complex acoustic intensity, especially the vertical components are observed. The results show that, with constructive and destructive interferences in the depth direction, there could be quantities of crests and vortices in the spatial structure of time-dependent complex intensity, which manifest a unique dynamic characteristic of sound energy. With more complicated interactions among the wavefronts, a structure source could not be equivalent to a point source in most instances. The vector sound field characteristics of the two sources could be entirely different, even though the scalar sound field characteristics are similar. Meanwhile, source types, source parameters, ocean environment parameters, and geo parameters may have influence on the vector sound field characteristics, which could be explained with the normal mode theory.

2021 ◽  
Vol 11 (6) ◽  
pp. 2722
Author(s):  
Zhiwen Qian ◽  
Dejiang Shang ◽  
Yuan Hu ◽  
Xinyang Xu ◽  
Haihan Zhao ◽  
...  

The Green’s function (GF) directly eases the efficient computation for acoustic radiation problems in shallow water with the use of the Helmholtz integral equation. The difficulty in solving the GF in shallow water lies in the need to consider the boundary effects. In this paper, a rigorous theoretical model of interactions between the spherical wave and the liquid boundary is established by Fourier transform. The accurate and adaptive GF for the acoustic problems in the Pekeris waveguide with lossy seabed is derived, which is based on the image source method (ISM) and wave acoustics. First, the spherical wave is decomposed into plane waves in different incident angles. Second, each plane wave is multiplied by the corresponding reflection coefficient to obtain the reflected sound field, and the field is superposed to obtain the reflected sound field of the spherical wave. Then, the sound field of all image sources and the physical source are summed to obtain the GF in the Pekeris waveguide. The results computed by this method are compared with the standard wavenumber integration method, which verifies the accuracy of the GF for the near- and far-field acoustic problems. The influence of seabed attenuation on modal interference patterns is analyzed.


2018 ◽  
Vol 75 (10) ◽  
pp. 3597-3612 ◽  
Author(s):  
Arata Amemiya ◽  
Kaoru Sato

The Asian monsoon anticyclone, which develops in the upper troposphere and lower stratosphere during boreal summer, exhibits significant subseasonal variability with a characteristic spatial structure. The dynamics of this variability is investigated using a nonlinear β-plane shallow-water model. The equivalent depth is estimated using reanalysis data to relate the three-dimensional dynamics in isentropic coordinates to the shallow-water model. Composite analysis reveals the resemblance of the horizontal structures between the Montgomery streamfunction and thickness on the 360-K level. However, the coefficients of the linear regressions between those two variables are strongly dependent on latitude. The estimated equivalent depths of the northern region are more than 2 times greater than those of the southern region. This is attributable to the background thermal structure around the tropopause. Based on this, a latitude-dependent mean depth is incorporated into the shallow-water model to numerically investigate responses to a steady localized forcing in the subtropics. With the inclusion of the latitudinal dependence of the mean depth, the vortex shedding state is able to have a longitudinally confined structure, which differs from the conventional case of constant mean depth. The spatial structure of this numerical solution corresponds to the observed structure, in which low-PV air is largely confined to finite longitudes within the Asian monsoon anticyclone. This suggests the possible role of dynamical instability and the interaction with the subtropical jet in determining the characteristic structure of the Asian monsoon anticyclone.


1998 ◽  
Vol 5 (3) ◽  
pp. 163-183 ◽  
Author(s):  
Higini Arau

In this paper we describe a method of calculation of the energy relations in halls where the existence of a non-uniform distribution of absorptive material in the room results in a non-diffuse sound field. The cases of halls used for concerts and speech have both been treated in order to derive new energy relations that yield known expressions when applied to a diffuse sound field. The importance of the initial reverberation time corresponding to the first portion of the decay has been verified showing that the main subjective parameters relating to the sound energy are influenced strongly by this portion, which is called the Early Decay Time if it is measured in the first 10 dB of the decay.


2021 ◽  
Author(s):  
Sonja Heidi Maria Greiner ◽  
Halldór Geirsson

<p>Deformation models are an important tool to study and monitor active volcanoes. However, in many cases models are strongly simplified either due to a lack of data or for the sake of speed and computational demands. The assumption of a magma body embedded in a homogeneous elastic half-space for example neglects the topography and heterogeneous crustal structures found at some volcanoes. This oversimplification can lead to a poor representation of individual systems and result in erroneous estimates of deformation source parameters like the location and geometry of a magma chamber.  The Finite Element Method (FEM) is a powerful tool to include complex heterogeneous structures and existing data sets into deformation models in order to create more realistic representations of individual volcanic systems. <br>In this study, the FEM-software COMSOL was used to build a three-dimensional elastic model of the subglacial volcano Grímsvötn, Iceland, accounting for the steep topography at the caldera rim, using a digital elevation model, as well as crustal heterogeneity. The elastic structure developed for this model is based on a density-structure, a seismic-velocity-structure and a pressure-dependent relation between the dynamic and static elastic moduli. The main feature of the elastic structure is a weak material (static shear modulus of G<sub>stat</sub>=0.6-9.8 GPa from 1 km above to 2 km below sea level) filing the caldera, which is surrounded by a stiffer, ring-like structure underneath the caldera rim (G<sub>stat</sub>=1.6-18 GPa from 1 km above to 2 km below sea level). The source parameters and geometry of forward models including the topography and elastic structure (individually and combined) were varied to fit the deformation observed at the nunatak GPS station GFUM, located at the caldera rim, during the last eruption (2011). While the topography has limited influence at the deformation at GFUM, the elastic structure requires the magma chamber to be significantly deeper than previous models suggested.</p>


Author(s):  
Carl Trygve Stansberg ◽  
Trygve Kristiansen

Slowly varying motions and drift forces of a large moored ship in random waves at 35m water depth are investigated by an experimental wave basin study in scale 1:50. A simple horizontal mooring set-up is used. A second-order wave correction is applied to minimize “parasitic” long waves. The effect on the ship motion from the correction is clearly seen, although less in random wave spectra than in pure bi-chromatic waves. Empirical quadratic transfer functions (QTFs) of the surge drift force are found by use of cross-bi-spectral analysis, in two different spectra have been obtained. The QTF levels increase significantly with lower wave frequencies (except at the diagonal), which is special for finite and shallow water. Furthermore, the QTF levels frequencies at low frequencies increase significantly out from the QTF diagonal. Thus Newman’s approximation should preferrably not be used in these cases. Using the LF waves as a direct excitation in a “linear” ship force analysis gives random records that compare reasonably well with those from the cross-bi-spectral analysis. This confirms the idea that the drift forces in shallow water are closely correlated to the second-order potential, and thereby by the second-order LF waves.


2014 ◽  
Vol 577 ◽  
pp. 1198-1201
Author(s):  
Zhang Liang ◽  
Chun Xia Meng ◽  
Hai Tao Xiao

The physical characteristics are compared between shallow and deep water, in physics and acoustics, respectively. There is a specific sound speed profile in deep water, which is different from which in shallow water, resulting in different sound propagation law between them. In this paper, the sound field distributions are simulated under respective typical sound speed profile. The color figures of sound intensity are obtained, in which the horizontal ordinate is distance, and the vertical ordinate is depth. Then we can get some important characteristics of sound propagation. The results show that the seabed boundary is an important influence on sound propagation in shallow water, and sound propagation loss in deep water convergent zone is visibly less than which in spherical wave spreading. We can realize the remote probing using the acoustic phenomenon.


2008 ◽  
Vol 54 (6) ◽  
pp. 844-853 ◽  
Author(s):  
A. A. Lunkov ◽  
S. A. Pereselkov ◽  
V. G. Petnikov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document