magma chamber
Recently Published Documents


TOTAL DOCUMENTS

753
(FIVE YEARS 138)

H-INDEX

65
(FIVE YEARS 4)

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 108
Author(s):  
Carlos Enrique Zambra ◽  
Luciano Gonzalez-Olivares ◽  
Johan González ◽  
Benjamin Clausen

This research numerically studies the transient cooling of partially liquid magma by natural convection in an enclosed magma chamber. The mathematical model is based on the conservation laws for momentum, energy and mass for a non-Newtonian and incompressible fluid that may be modeled by the power law and the Oberbeck–Boussinesq equations (for basaltic magma) and solved with the finite volume method (FVM). The results of the programmed algorithm are compared with those in the literature for a non-Newtonian fluid with high apparent viscosity (10–200 Pa s) and Prandtl (Pr = 4 × 104) and Rayleigh (Ra = 1 × 106) numbers yielding a low relative error of 0.11. The times for cooling the center of the chamber from 1498 to 1448 K are 40 ky (kilo years), 37 and 28 ky for rectangular, hybrid and quasi-elliptical shapes, respectively. Results show that for the cases studied, natural convection moved the magma but had no influence on the isotherms; therefore the main mechanism of cooling is conduction. When a basaltic magma intrudes a chamber with rhyolitic magma in our model, natural convection is not sufficient to effectively mix the two magmas to produce an intermediate SiO2 composition.


2021 ◽  
Vol 946 (1) ◽  
pp. 012031
Author(s):  
O V Veselov ◽  
A I Kazakov ◽  
D N Kozlov

Abstract Based on 198 determinations of the complete silicate analysis of Tyatya volcano (Kunashir Island), we compared the data of the latter (1973) and all previous eruptions to reveal their differences and determine the evolution of Tyatya volcanism in the Holocene. The application of the estimation of the thermobaric parameters of the upper mantle magma chamber of the volcano made it possible to determine the temperature decrease in the magma chamber in 1973. An assumption was made about the polycyclic magmatic activity of the Tyatya volcano. The results of statistical processing of data on the thickness of tephra and the size of its fragments from the 1973 eruption are presented. Polynomial regressions of various degrees are applied. Models of tephra distribution based on three-dimensional trend analysis have been constructed. The results of the study are recommended for the creation of information databases on the petrochemistry of eruption products and the distribution of pyroclastics from volcanoes in the Kuril Island arc.


2021 ◽  
Author(s):  
Lipeng He ◽  
Zhen Guo ◽  
Yongshun John Chen ◽  
Qinghua Huang ◽  
Yingjie Yang

2021 ◽  
Author(s):  
◽  
Katy Jane Chamberlain

<p>The Bishop Tuff is the product of one of the largest eruptions on Earth in the last 1 Myr. This thesis studies the Bishop Tuff in order to better understand the nature of the pre-eruptive magma body, with an emphasis on the processes that occurred within it and the timescales over which they operated. In situ geochemical analyses of crystals and glass from samples collected throughout the Bishop Tuff stratigraphic succession yields insights into the nature of zoning and mixing within this supervolcanic system. Timescales for zircon growth (inferred to represent longevity of the magma chamber) are investigated using U-Pb dating of zircons. Zircon textural and trace element data obtained by SIMS (SHRIMP-RG) are presented from 15 stratigraphically controlled Bishop Tuff samples and two older Glass Mountain (GM) lava samples. The resulting eruption age estimate derived from the weighted mean of 166 rim ages of 766.6±3.1 ka (95% confidence) is identical within uncertainty to published values from ID-TIMS and 40Ar/39Ar techniques. An eruption age is also derived for GM dome YA (the youngest GM dome) of 862±23 ka (95% confidence), significantly older than the widely used 790±20 ka K-Ar age. The oldest zircon cores from late-erupted Bishop material (including those with GM-type textures) have a weighted mean of 838.5±8.8 ka (95% confidence), implying that the Bishop Tuff system was only active for ~80 kyr, and had effectively no temporal overlap with the GM system. Bishop zircon textures are divided into four suites whose proportions change systematically through the eruptive sequence. Trace element variations in Bishop zircons are influenced strongly by sector zoning for many elements, and thus restrict the value of trace element variations in discerning compositional stratification within the magma chamber. In later-erupted units, bright-rim overgrowths are common, and are inferred to have crystallized from the same „bright-rim‟ magma as generated the contrasting rims seen in CL or BSE imaging on quartz, feldspar and orthopyroxene. From zircon zonation patterns, this less-evolved, slightly hotter magma invaded deeper parts of the chamber represented in the late-erupted northern units possibly up to ~10 kyr prior to eruption. In order to better quantify the timescales of interaction with the „bright-rim‟ magma, two-feldspar thermometry data are presented on multiple Bishop Tuff samples to constrain temperature variations within the pre-eruptive magma body and yield values for diffusion modelling. Two-feldspar thermometry agrees well with published Fe–Ti-oxide thermometry and reveals a ~80 °C uniform thermal gradient between the upper and lower regions of the magma chamber. Using this thermometry, diffusion of Ti in quartz, Ba in sanidine, Sr in sanidine and Fe-Mg interdiffusion in orthopyroxene are modelled to estimate timescales for the formation of overgrowth rims on crystals. Ti in quartz and Fe-Mg in orthopyroxene diffusion both yield timescales of <150 years for the formation of overgrowth rims, although differing by about an order of magnitude in their timing. However, Ba and Sr diffusion modelling in sanidine yields disparate timescales 1-2 orders of magnitude longer than for Ti in quartz. The main cause for this discrepancy is inferred to be an incorrect assumption for the initial profile shape for Ba and Sr diffusion modelling (i.e. the profile is influenced by growth zoning). Using the comparison with Sr, constraints are placed on the initial width of the core-rim interface and the initial conditions can be refined, bringing Ba and Sr diffusion timescales into mutual alignment and closer to the values from Ti in quartz. This modelling shows that piecemeal rejuvenation of lower Bishop Tuff magma chamber occurred over a period of ~500 years leading up to eruption. In situ major and trace element analyses of sanidine, plagioclase, biotite, orthopyroxene, clinopyroxene, zircon and matrix glass from the Bishop Tuff and two GM lavas are presented to investigate the pre-eruptive stratification of the Bishop magma chamber and its chemical relationship to the GM system. Analyses of samples from the entire Bishop stratigraphy confirm that the magma chamber was thermally and compositionally zoned prior to growth of crystals and the intrusion of the „bright-rim‟ forming magma. Study of rare mixed swirly and dacitic pumice samples shows enrichments in Ba, Sr and Ti (the elements responsible for bright-rim overgrowths in phenocryst phases) and identifies these pumices as possible representatives of the „bright-rim‟ magma. This integrated study of phenocrysts and glass from the Bishop Tuff leads to development of a revised magma chamber model, in which there is a unitary chamber with a stepped or sloping roof. The chamber has an upper, volumetrically dominant (~2/3) part showing no evidence for convection and with unzoned crystals, and a lower part which had experienced mixing of crystals and interaction with the „bright-rim‟ magma. Intrusion of the „bright-rim‟ magma introduced orthopyroxene and dominantly bright zircon crystals, and caused overgrowth of bright rims enriched in Ti, Sr and Ba on sanidine and quartz phenocrysts. Chemical compositions of GM and Bishop Tuff materials show a shared consanguinity, implying common modes of magma generation, yet the generation of GM and Bishop eruptible magma bodies were physically and temporally separate events.</p>


2021 ◽  
Author(s):  
◽  
Katy Jane Chamberlain

<p>The Bishop Tuff is the product of one of the largest eruptions on Earth in the last 1 Myr. This thesis studies the Bishop Tuff in order to better understand the nature of the pre-eruptive magma body, with an emphasis on the processes that occurred within it and the timescales over which they operated. In situ geochemical analyses of crystals and glass from samples collected throughout the Bishop Tuff stratigraphic succession yields insights into the nature of zoning and mixing within this supervolcanic system. Timescales for zircon growth (inferred to represent longevity of the magma chamber) are investigated using U-Pb dating of zircons. Zircon textural and trace element data obtained by SIMS (SHRIMP-RG) are presented from 15 stratigraphically controlled Bishop Tuff samples and two older Glass Mountain (GM) lava samples. The resulting eruption age estimate derived from the weighted mean of 166 rim ages of 766.6±3.1 ka (95% confidence) is identical within uncertainty to published values from ID-TIMS and 40Ar/39Ar techniques. An eruption age is also derived for GM dome YA (the youngest GM dome) of 862±23 ka (95% confidence), significantly older than the widely used 790±20 ka K-Ar age. The oldest zircon cores from late-erupted Bishop material (including those with GM-type textures) have a weighted mean of 838.5±8.8 ka (95% confidence), implying that the Bishop Tuff system was only active for ~80 kyr, and had effectively no temporal overlap with the GM system. Bishop zircon textures are divided into four suites whose proportions change systematically through the eruptive sequence. Trace element variations in Bishop zircons are influenced strongly by sector zoning for many elements, and thus restrict the value of trace element variations in discerning compositional stratification within the magma chamber. In later-erupted units, bright-rim overgrowths are common, and are inferred to have crystallized from the same „bright-rim‟ magma as generated the contrasting rims seen in CL or BSE imaging on quartz, feldspar and orthopyroxene. From zircon zonation patterns, this less-evolved, slightly hotter magma invaded deeper parts of the chamber represented in the late-erupted northern units possibly up to ~10 kyr prior to eruption. In order to better quantify the timescales of interaction with the „bright-rim‟ magma, two-feldspar thermometry data are presented on multiple Bishop Tuff samples to constrain temperature variations within the pre-eruptive magma body and yield values for diffusion modelling. Two-feldspar thermometry agrees well with published Fe–Ti-oxide thermometry and reveals a ~80 °C uniform thermal gradient between the upper and lower regions of the magma chamber. Using this thermometry, diffusion of Ti in quartz, Ba in sanidine, Sr in sanidine and Fe-Mg interdiffusion in orthopyroxene are modelled to estimate timescales for the formation of overgrowth rims on crystals. Ti in quartz and Fe-Mg in orthopyroxene diffusion both yield timescales of <150 years for the formation of overgrowth rims, although differing by about an order of magnitude in their timing. However, Ba and Sr diffusion modelling in sanidine yields disparate timescales 1-2 orders of magnitude longer than for Ti in quartz. The main cause for this discrepancy is inferred to be an incorrect assumption for the initial profile shape for Ba and Sr diffusion modelling (i.e. the profile is influenced by growth zoning). Using the comparison with Sr, constraints are placed on the initial width of the core-rim interface and the initial conditions can be refined, bringing Ba and Sr diffusion timescales into mutual alignment and closer to the values from Ti in quartz. This modelling shows that piecemeal rejuvenation of lower Bishop Tuff magma chamber occurred over a period of ~500 years leading up to eruption. In situ major and trace element analyses of sanidine, plagioclase, biotite, orthopyroxene, clinopyroxene, zircon and matrix glass from the Bishop Tuff and two GM lavas are presented to investigate the pre-eruptive stratification of the Bishop magma chamber and its chemical relationship to the GM system. Analyses of samples from the entire Bishop stratigraphy confirm that the magma chamber was thermally and compositionally zoned prior to growth of crystals and the intrusion of the „bright-rim‟ forming magma. Study of rare mixed swirly and dacitic pumice samples shows enrichments in Ba, Sr and Ti (the elements responsible for bright-rim overgrowths in phenocryst phases) and identifies these pumices as possible representatives of the „bright-rim‟ magma. This integrated study of phenocrysts and glass from the Bishop Tuff leads to development of a revised magma chamber model, in which there is a unitary chamber with a stepped or sloping roof. The chamber has an upper, volumetrically dominant (~2/3) part showing no evidence for convection and with unzoned crystals, and a lower part which had experienced mixing of crystals and interaction with the „bright-rim‟ magma. Intrusion of the „bright-rim‟ magma introduced orthopyroxene and dominantly bright zircon crystals, and caused overgrowth of bright rims enriched in Ti, Sr and Ba on sanidine and quartz phenocrysts. Chemical compositions of GM and Bishop Tuff materials show a shared consanguinity, implying common modes of magma generation, yet the generation of GM and Bishop eruptible magma bodies were physically and temporally separate events.</p>


Sign in / Sign up

Export Citation Format

Share Document