scholarly journals Modeling and Simulation of an Intelligent Photovoltaic Controller Based on Variable Step Algorithm of Versoria

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Bo Sun ◽  
Yongquan You ◽  
Zhiyong Zhang ◽  
Chao Li

As a green and renewable energy source, photovoltaic power is of great significance for the sustainable development of energy and has been increasingly exploited. The photovoltaic controller is the key component of a photovoltaic power generation system, and its central technology is the maximum power point tracking technology. In this paper, a mathematical model of photovoltaic cells is firstly established, the output characteristics of photovoltaic cells are analyzed, the main factors that affect the output efficiency of photovoltaic cells are obtained, and it is proved that the most important factor that affects the output power is the light intensity. Therefore, in the design, the maximum power point of the photovoltaic cell is tracked by the control algorithm and can maximize the use of photovoltaic output power fast charging. The key to the design of a photovoltaic controller is the design of control algorithm. So, an improved fuzzy control algorithm is proposed to overcome the shortcomings of the traditional maximum power point tracking (MPPT) algorithm. The algorithm can consider tracking both speed and convergence, but the algorithm requires high input and output fuzzy domain parameters, and although the tracking speed is fast, the stability of convergence is poor. For the limitation of fuzzy control algorithm, considering the property of the Versoria function, an MPPT design method for an intelligent controller based on the Versoria variable step algorithm is further proposed. According to the output characteristics of photovoltaic cells, three parameters, α, β, and γ, are set to solve the tracking speed and tracking stability. In order to reduce the static error, a genetic factor is proposed to sum up the historical error to effectively improve the tracking stability. The simulation results show that the algorithm can track the maximum power point quickly and has good tracking speed and stability. This algorithm can be used in engineering practice effectively.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Zhaohong Zheng ◽  
Tianxia Zhang ◽  
Jiaxiang Xue

To realize the maximum power output of a grid-connected inverter, the MPPT (maximum power point tracking) control method is needed. The perturbation and observation (P&O) method can cause the inverter operating point to oscillate near the maximum power. In this paper, the fuzzy control P&O method is proposed, and the fuzzy control algorithm is applied to the disturbance observation method. The simulation results of the P&O method with fuzzy control and the traditional P&O method prove that not only can the new method reduce the power loss caused by inverter oscillation during maximum power point tracking, but also it has the advantage of speed. Inductive loads in the post-grid-connected stage cause grid-connected current distortion. A fuzzy control algorithm is added to the traditional deadbeat grid-connected control method to improve the quality of the system’s grid-connected operation. The fuzzy deadbeat control method is verified by experiments, and the harmonic current of the grid-connected current is less than 3%.


2015 ◽  
Vol 737 ◽  
pp. 24-29
Author(s):  
Xing Xing Qiu ◽  
Yi Gang He

Based on mathematical models and output characteristics of photovoltaic cells, the simulation model for engineering application is established. By the model, the output characteristics of photovoltaic cells with different environmental factors can be analyzed. In MATLAB/SIMULINK environment, the model of the PV maximum power point tracking control is constructed. The simulation results demonstrate that PV can run at the maximum power point with the change of environment factors.


2013 ◽  
Vol 676 ◽  
pp. 330-334
Author(s):  
Bo Sun ◽  
Jian Yong Zheng

Photovoltaic array output characteristics under partial shading conditions have multi local maximum power points, but traditional maximum power point tracking methods failed to identify global maximum power point. Output characteristics of shadowed PV array under different illumination were simulated by Matlab software. The rule between voltage of possible local maximum power point and the open circuit voltage was summarized. According to this rule, a modified algorithm based on the Incremental Conductance method was put forward. Simulations results indicated that the proposed MPPT algorithm can accurately track the global maximum power point under uniform illumination and partial shading conditions. It can improve the efficiency of PV system.


Sign in / Sign up

Export Citation Format

Share Document