scholarly journals Microcluster-Based Incremental Ensemble Learning for Noisy, Nonstationary Data Streams

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Sanmin Liu ◽  
Shan Xue ◽  
Fanzhen Liu ◽  
Jieren Cheng ◽  
Xiulai Li ◽  
...  

Data stream classification becomes a promising prediction work with relevance to many practical environments. However, under the environment of concept drift and noise, the research of data stream classification faces lots of challenges. Hence, a new incremental ensemble model is presented for classifying nonstationary data streams with noise. Our approach integrates three strategies: incremental learning to monitor and adapt to concept drift; ensemble learning to improve model stability; and a microclustering procedure that distinguishes drift from noise and predicts the labels of incoming instances via majority vote. Experiments with two synthetic datasets designed to test for both gradual and abrupt drift show that our method provides more accurate classification in nonstationary data streams with noise than the two popular baselines.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yange Sun ◽  
Meng Li ◽  
Lei Li ◽  
Han Shao ◽  
Yi Sun

Class imbalance and concept drift are two primary principles that exist concurrently in data stream classification. Although the two issues have drawn enough attention separately, the joint treatment largely remains unexplored. Moreover, the class imbalance issue is further complicated if data streams with concept drift. A novel Cost-Sensitive based Data Stream (CSDS) classification is introduced to overcome the two issues simultaneously. The CSDS considers cost information during the procedures of data preprocessing and classification. During the data preprocessing, a cost-sensitive learning strategy is introduced into the ReliefF algorithm for alleviating the class imbalance at the data level. In the classification process, a cost-sensitive weighting schema is devised to enhance the overall performance of the ensemble. Besides, a change detection mechanism is embedded in our algorithm, which guarantees that an ensemble can capture and react to drift promptly. Experimental results validate that our method can obtain better classification results under different imbalanced concept drifting data stream scenarios.


Data Streams are having huge volume and it can-not be stored permanently in the memory for processing. In this paper we would be mainly focusing on issues in data stream, the major factors which are affecting the accuracy of classifier like imbalance class and Concept Drift. The drift in Data Stream mining refers to the change in data. Such as Class imbalance problem notifies that the samples are in the classes are not equal. In our research work we are trying to identify the change (Drift) in data, we are trying to detect Imbalance class and noise from changed data. And According to the type of drift we are applying the algorithms and trying to make the stream more balance and noise free to improve classifier’s accuracy.


2019 ◽  
Vol 11 (1) ◽  
pp. 29-48 ◽  
Author(s):  
Mohammed Ahmed Ali Abdualrhman ◽  
M C Padma

The data in streaming environment tends to be non-stationary. Hence, frequent and irregular changes occur in data, which usually denotes as a concept drift related to the process of classifying data streams. Depiction of the concept drift in traditional phase of data stream mining demands availability of labelled samples; however, incorporating the label to a streamlining transaction is infeasible in terms of process time and resource utilization. In this article, deterministic concept drift detection (DCDD) in ensemble classifier-based data stream classification process is proposed, which can depict a concept drift regardless of the labels assigned to samples. The depicted model of DCDD is evaluated by experimental study on dataset called poker-hand. The experimental result showing that the proposed model is accurate and scalable to detect concept drift with high drift detection rate and minimal false alarming and missing rate that compared to other contemporary models.


2021 ◽  
Author(s):  
Ben Halstead ◽  
Yun Sing Koh ◽  
Patricia Riddle ◽  
Russel Pears ◽  
Mykola Pechenizkiy ◽  
...  

2021 ◽  
pp. 1-14
Author(s):  
Hanqing Hu ◽  
Mehmed Kantardzic

Real-world data stream classification often deals with multiple types of concept drift, categorized by change characteristics such as speed, distribution, and severity. When labels are unavailable, traditional concept drift detection algorithms, used in stream classification frameworks, are often focused on only one type of concept drift. To overcome the limitations of traditional detection algorithms, this study proposed a Heuristic Ensemble Framework for Drift Detection (HEFDD). HEFDD aims to detect all types of concept drift by employing an ensemble of selected concept drift detection algorithms, each capable of detecting at least one type of concept drift. Experimental results show HEFDD provides significant improvement based on the z-score test when comparing detection accuracy with state-of-the-art individual algorithms. At the same time, HEFDD is able to reduce false alarms generated by individual concept drift detection algorithms.


Author(s):  
Snehlata Sewakdas Dongre ◽  
Latesh G. Malik

A data stream is giant amount of data which is generated uncontrollably at a rapid rate from many applications like call detail records, log records, sensors applications etc. Data stream mining has grasped the attention of so many researchers. A rising problem in Data Streams is the handling of concept drift. To be a good algorithm it should adapt the changes and handle the concept drift properly. Ensemble classification method is the group of classifiers which works in collaborative manner. Overall this chapter will cover all the aspects of the data stream classification. The mission of this chapter is to discuss various techniques which use collaborative filtering for the data stream mining. The main concern of this chapter is to make reader familiar with the data stream domain and data stream mining. Instead of single classifier the group of classifiers is used to enhance the accuracy of classification. The collaborative filtering will play important role here how the different classifiers work collaborative within the ensemble to achieve a goal.


2022 ◽  
Vol 18 (1) ◽  
pp. 1-17
Author(s):  
Sarah Nait Bahloul ◽  
Oussama Abderrahim ◽  
Aya Ichrak Benhadj Amar ◽  
Mohammed Yacine Bouhedadja

The classification of data streams has become a significant and active research area. The principal characteristics of data streams are a large amount of arrival data, the high speed and rate of its arrival, and the change of their nature and distribution over time. Hoeffding Tree is a method to, incrementally, build decision trees. Since its proposition in the literature, it has become one of the most popular tools of data stream classification. Several improvements have since emerged. Hoeffding Anytime Tree was recently introduced and is considered one of the most promising algorithms. It offers a higher accuracy compared to the Hoeffding Tree in most scenarios, at a small additional computational cost. In this work, the authors contribute by proposing three improvements to the Hoeffding Anytime Tree. The improvements are tested on known benchmark datasets. The experimental results show that two of the proposed variants make better usage of Hoeffding Anytime Tree’s properties. They learn faster while providing the same desired accuracy.


Sign in / Sign up

Export Citation Format

Share Document