scholarly journals Corrigendum to “Multistage System-Based Machine Learning Techniques for Intrusion Detection in WiFi Network”

2020 ◽  
Vol 2020 ◽  
pp. 1-1
Author(s):  
Vu Viet Thang ◽  
F. F. Pashchenko
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Vu Viet Thang ◽  
F. F. Pashchenko

The aim of machine learning is to develop algorithms that can learn from data and solve specific problems in some context as human do. This paper presents some machine learning models applied to the intrusion detection system in WiFi network. Firstly, we present an incremental semisupervised clustering based on a graph. Incremental clustering or one-pass clustering is very useful when we work with data stream or dynamic data. In fact, for traditional clustering such as K-means, Fuzzy C-Means, DBSCAN, etc., many versions of incremental clustering have been developed. However, to the best of our knowledge, there is no incremental semisupervised clustering in the literature. Secondly, by combining a K-means algorithm and a measure of local density score, we propose a fast outlier detection algorithm, named FLDS. The complexity of FLDS is On1.5 while the results obtained are comparable with the algorithm LOF. Thirdly, we introduce a multistage system-based machine learning techniques for mining the intrusion detection data applied for the 802.11 WiFi network. Finally, experiments conducted on some data sets extracted from the 802.11 networks and UCI data sets show the effectiveness of our new proposed methods.


The Intrusion is a major threat to unauthorized data or legal network using the legitimate user identity or any of the back doors and vulnerabilities in the network. IDS mechanisms are developed to detect the intrusions at various levels. The objective of the research work is to improve the Intrusion Detection System performance by applying machine learning techniques based on decision trees for detection and classification of attacks. The methodology adapted will process the datasets in three stages. The experimentation is conducted on KDDCUP99 data sets based on number of features. The Bayesian three modes are analyzed for different sized data sets based upon total number of attacks. The time consumed by the classifier to build the model is analyzed and the accuracy is done.


Author(s):  
N. Ravi ◽  
G. Ramachandran

Recent advancement in technologies such as Cloud, Internet of Things etc., leads to the increase usage of mobile computing. Present day mobile computing are too sophisticated and advancement are reaching great heights. Moreover, the present day mobile network suffers due to external and internal intrusions within and outside networks. The existing security systems to protect the mobile networks are incapable to detect the recent attacks. Further, the existing security system completely depends on the traditional signature and rule based approaches. Recent attacks have the property of not fluctuating its behaviour during attack. Hence, a robust Intrusion Detection System (IDS) is desirable. In order to address the above mentioned issue, this paper proposed a robust IDS using Machine Learning Techniques (MLT). The key of using MLT is to utilize the power of ensembles. The ensembles of classifier used in this paper are Random Forest (RF), KNN, Naïve Bayes (NB), etc. The proposed IDS is experimentally tested and validated using a secure test bed. The experimental results also confirms that the proposed IDS is robust enough to withstand and detect any form of intrusions and it is also noted that the proposed IDS outperforms the state of the art IDS with more than 95% accuracy.


Sign in / Sign up

Export Citation Format

Share Document