scholarly journals Cyclic Codes via the General Two-Prime Generalized Cyclotomic Sequence of Order Two

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xia Zhou

Suppose that p and q are two distinct odd prime numbers with n = p q . In this paper, the uniform representation of general two-prime generalized cyclotomy with order two over ℤ n was demonstrated. Based on this general generalized cyclotomy, a type of binary sequences defined over F l was presented and their minimal polynomials and linear complexities were derived, where l = r s with a prime number r and gcd l , n = 1 . The results have indicated that the linear complexities of these sequences are high without any special requirements on the prime numbers. Furthermore, we employed these sequences to obtain a few cyclic codes over F l with length n and developed the lower bounds of the minimum distances of many cyclic codes. It is important to stress that some cyclic codes in this paper are optimal.

2020 ◽  
Vol 30 (1) ◽  
pp. 175-192
Author(s):  
NathanaËl Fijalkow

Abstract This paper studies the complexity of languages of finite words using automata theory. To go beyond the class of regular languages, we consider infinite automata and the notion of state complexity defined by Karp. Motivated by the seminal paper of Rabin from 1963 introducing probabilistic automata, we study the (deterministic) state complexity of probabilistic languages and prove that probabilistic languages can have arbitrarily high deterministic state complexity. We then look at alternating automata as introduced by Chandra, Kozen and Stockmeyer: such machines run independent computations on the word and gather their answers through boolean combinations. We devise a lower bound technique relying on boundedly generated lattices of languages, and give two applications of this technique. The first is a hierarchy theorem, stating that there are languages of arbitrarily high polynomial alternating state complexity, and the second is a linear lower bound on the alternating state complexity of the prime numbers written in binary. This second result strengthens a result of Hartmanis and Shank from 1968, which implies an exponentially worse lower bound for the same model.


2021 ◽  
Author(s):  
Xie Ling

Abstract n continuous prime numbers can combine a group of continuous even numbers. If an adjacent prime number is followed, the even number will continue. For example, if we take prime number 3, we can get even number 6. If we follow an adjacent prime number 5, we can get even numbers by using 3 and 5: 6, 8 and 10. If a group of continuous prime numbers 3,5,7,11,... P, we can get a group of continuous even numbers 6,8,10,12,..., 2n. Then if an adjacent prime number q is followed, the original group of even numbers 6,8,10,12,..., 2n will be finitely extended to 2 (n + 1) or more adjacent even numbers. My purpose is to prove that the continuity of prime numbers will lead to even continuity as long as 2 (n + 1) can be extended. If the continuity of even numbers is discontinuous, it violates the Bertrand Chebyshev theorem of prime numbers. Because there are infinitely many prime numbers: 3, 5, 7, 11,... We can get infinitely many continuous even numbers: 6,8,10,12,...


10.37236/3097 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Fateme Raei Barandagh ◽  
Amir Rahnamai Barghi

Let $n>1$ be an integer and $p$ be a prime number. Denote by $\mathfrak{C}_{p^n}$ the class of non-thin association $p$-schemes of degree $p^n$. A sharp upper and lower bounds on the rank of schemes in $\mathfrak{C}_{p^n}$ with a certain order of thin radical are obtained. Moreover, all schemes in this class whose rank are equal to the lower bound are characterized and some schemes in this class whose rank are equal to the upper bound are constructed. Finally, it is shown that the scheme with minimum rank in $\mathfrak{C}_{p^n}$ is unique up to isomorphism, and it is a fusion of any association $p$-schemes with degree $p^n$.


2021 ◽  
Author(s):  
Xie Ling

Abstract n continuous prime numbers can combine a group of continuous even numbers. If an adjacent prime number is followed, the even number will continue. For example, if we take prime number 3, we can get even number 6. If we follow an adjacent prime number 5, we can get even numbers by using 3 and 5: 6, 8 and 10. If a group of continuous prime numbers 3,5,7,11,... P, we can get a group of continuous even numbers 6,8,10,12,..., 2n. Then if an adjacent prime number q is followed, the original group of even numbers 6,8,10,12,..., 2n will be finitely extended to 2 (n + 1) or more adjacent even numbers. My purpose is to prove that the continuity of prime numbers will lead to even continuity as long as 2 (n + 1) can be extended. If the continuity of even numbers is discontinuous, it violates the Bertrand Chebyshev theorem of prime numbers. Because there are infinitely many prime numbers: 3, 5, 7, 11,... We can get infinitely many continuous even numbers: 6,8,10,12,...


2020 ◽  
Vol 8 (2) ◽  
pp. 113-120
Author(s):  
Aminudin Aminudin ◽  
Gadhing Putra Aditya ◽  
Sofyan Arifianto

This study aims to analyze the performance and security of the RSA algorithm in combination with the key generation method of enhanced and secured RSA key generation scheme (ESRKGS). ESRKGS is an improvement of the RSA improvisation by adding four prime numbers in the property embedded in key generation. This method was applied to instant messaging using TCP sockets. The ESRKGS+RSA algorithm was designed using standard RSA development by modified the private and public key pairs. Thus, the modification was expected to make it more challenging to factorize a large number n into prime numbers. The ESRKGS+RSA method required 10.437 ms faster than the improvised RSA that uses the same four prime numbers in conducting key generation processes at 1024-bit prime number. It also applies to the encryption and decryption process. In the security testing using Fermat Factorization on a 32-bit key, no prime number factor was found. The test was processed for 15 hours until the test computer resource runs out.


2021 ◽  
Vol 58 (3) ◽  
pp. 319-334
Author(s):  
Huaning Liu ◽  
Yinyin Yang

In cryptography one needs pseudorandom sequences whose short subsequences are also pseudorandom. To handle this problem, Dartyge, Gyarmati and Sárközy introduced weighted measures of pseudorandomness of binary sequences. In this paper we continue the research in this direction. We introduce weighted pseudorandom measure for multidimensional binary lattices and estimate weighted pseudorandom measure for truly random binary lattices. We also give lower bounds for weighted measures of even order and present an example by using the quadratic character of finite fields.


2019 ◽  
Vol 15 (05) ◽  
pp. 1037-1050
Author(s):  
Erik R. Tou

The mathematics of juggling emerged after the development of siteswap notation in the 1980s. Consequently, much work was done to establish a mathematical theory that describes and enumerates the patterns that a juggler can (or would want to) execute. More recently, mathematicians have provided a broader picture of juggling sequences as an infinite set possessing properties similar to the set of positive integers. This theoretical framework moves beyond the physical possibilities of juggling and instead seeks more general mathematical results, such as an enumeration of juggling patterns with a fixed period and arbitrary number of balls. One problem unresolved until now is the enumeration of primitive juggling sequences, those fundamental juggling patterns that are analogous to the set of prime numbers. By applying analytic techniques to previously-known generating functions, we give asymptotic counting theorems for primitive juggling sequences, much as the prime number theorem gives asymptotic counts for the prime positive integers.


Author(s):  
Morteza Baniasad Azad ◽  
Behrooz Khosravi ◽  
Morteza Jafarpour

Let [Formula: see text] be a finite group and [Formula: see text], where [Formula: see text] denotes the order of [Formula: see text]. The function [Formula: see text] was introduced by Tărnăuceanu. In [M. Tărnăuceanu, Detecting structural properties of finite groups by the sum of element orders, Israel J. Math. (2020), https://doi.org/10.1007/s11856-020-2033-9 ], some lower bounds for [Formula: see text] are determined such that if [Formula: see text] is greater than each of them, then [Formula: see text] is cyclic, abelian, nilpotent, supersolvable and solvable. Also, an open problem aroused about finite groups [Formula: see text] such that [Formula: see text] is equal to the amount of each lower bound. In this paper, we give an answer to the equality condition which is a partial answer to the open problem posed by Tărnăuceanu. Also, in [M. Baniasad Azad and B. Khosravi, A criterion for p-nilpotency and p-closedness by the sum of element orders, Commun. Algebra (2020), https://doi.org/10.1080/00927872.2020.1788571 ], it is shown that: If [Formula: see text], where [Formula: see text] is a prime number, then [Formula: see text] and [Formula: see text] is cyclic. As the next result, we show that if [Formula: see text] is not a [Formula: see text]-nilpotent group and [Formula: see text], then [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document