scholarly journals On the Generalization of a Solution for a Class of Integro-Differential Equations with Nonseparated Integral Boundary Conditions

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yanyuan Xing ◽  
Feng Jiao ◽  
Fang Liu

In this paper, the existence and uniqueness results of the generalization nonlinear fractional integro-differential equations with nonseparated type integral boundary conditions are investigated. A natural formula of solutions is derived and some new existence and uniqueness results are obtained under some conditions for this class of problems by using standard fixed point theorems and Leray–Schauder degree theory, which extend and supplement some known results. Some examples are discussed for the illustration of the main work.

2020 ◽  
Vol 4 (2) ◽  
pp. 13 ◽  
Author(s):  
Shorog Aljoudi ◽  
Bashir Ahmad ◽  
Ahmed Alsaedi

In this paper, we study a coupled system of Caputo-Hadamard type sequential fractional differential equations supplemented with nonlocal boundary conditions involving Hadamard fractional integrals. The sufficient criteria ensuring the existence and uniqueness of solutions for the given problem are obtained. We make use of the Leray-Schauder alternative and contraction mapping principle to derive the desired results. Illustrative examples for the main results are also presented.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Mohamed I. Abbas

We prove the existence and uniqueness of solution for fractional differential equations with Riemann-Liouville fractional integral boundary conditions. The first existence and uniqueness result is based on Banach’s contraction principle. Moreover, other existence results are also obtained by using the Krasnoselskii fixed point theorem. An example is given to illustrate the main results.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Phollakrit Thiramanus ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

We study the existence and uniqueness of solutions for a fractional boundary value problem involving Hadamard-type fractional differential equations and nonlocal fractional integral boundary conditions. Our results are based on some classical fixed point theorems. Some illustrative examples are also included.


2013 ◽  
Vol 21 (3) ◽  
pp. 33-42 ◽  
Author(s):  
Ahmed Anber ◽  
Soumia Belarbi

AbstractIn this paper, we study a class of boundary value problems of nonlinear fractional differential equations with integral boundary conditions. Some new existence and uniqueness results are obtained by using Banach fixed point theorem. Other existence results are also presented by using Krasnoselskii theorem.


2020 ◽  
Vol 1 (1) ◽  
pp. 64-76
Author(s):  
Saleh Redhwan ◽  
Sadikali Shaikh

The given paper describes the implicit fractional differential equation with nonlinear integral boundary conditions in the frame of Caputo-Katugampola fractional derivative. We obtain an analogous integral equation of the given problem and prove the existence and uniqueness results of such a problem using the Banach and Krasnoselskii fixed point theorems. To show the effectiveness of the acquired results, convenient examples are presented.


2020 ◽  
Vol 9 (3) ◽  
pp. 531-544
Author(s):  
Choukri Derbazi ◽  
Hadda Hammouche

Abstract In this paper, we study the existence and uniqueness of solutions for fractional differential equations with nonlocal and fractional integral boundary conditions. New existence and uniqueness results are established using the Banach contraction principle. Other existence results are obtained using O’Regan fixed point theorem and Burton and Kirk fixed point. In addition, an example is given to demonstrate the application of our main results.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Wafa Shammakh ◽  
Hadeel Z. Alzumi ◽  
Zahra Albarqi

The aim of this work is to study the new generalized fractional differential equations involving generalized multiterms and equipped with multipoint boundary conditions. The nonlinear term is taken from Orlicz space. The existence and uniqueness results, with the help of contemporary tools of fixed point theory, are investigated. The Ulam stability of our problem is also presented. The obtained results are well illustrated by examples.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1899
Author(s):  
Ahmed Alsaedi ◽  
Amjad F. Albideewi ◽  
Sotiris K. Ntouyas ◽  
Bashir Ahmad

In this paper, we derive existence and uniqueness results for a nonlinear Caputo–Riemann–Liouville type fractional integro-differential boundary value problem with multi-point sub-strip boundary conditions, via Banach and Krasnosel’skii⏝’s fixed point theorems. Examples are included for the illustration of the obtained results.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Bashir Ahmad ◽  
Sotiris K. Ntouyas

We consider a new class of boundary value problems of nonlinear fractional differential equations with fractional separated boundary conditions. A connection between classical separated and fractional separated boundary conditions is developed. Some new existence and uniqueness results are obtained for this class of problems by using standard fixed point theorems. Some illustrative examples are also discussed.


Sign in / Sign up

Export Citation Format

Share Document