scholarly journals Fractal Dimension for the Nonautonomous Stochastic Fifth-Order Swift–Hohenberg Equation

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yanfeng Guo ◽  
Chunxiao Guo ◽  
Yongping Xi

Some dynamics behaviors for the nonautonomous stochastic fifth-order Swift–Hohenberg equation with additive white noise are considered. The existence of pullback random attractors for the nonautonomous stochastic fifth-order Swift–Hohenberg equation with some properties is mainly investigated on the bounded domain and unbounded domain, through the Ornstein–Uhlenbeck transformation and tail-term estimates. Furthermore, on the basis of some conditions, the finiteness of fractal dimension of random attractor is proved.

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jingyu Wang ◽  
Yejuan Wang ◽  
Lin Yang ◽  
Tomás Caraballo

<p style='text-indent:20px;'>A non-autonomous stochastic delay wave equation with linear memory and nonlinear damping driven by additive white noise is considered on the unbounded domain <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{R}^n $\end{document}</tex-math></inline-formula>. We establish the existence and uniqueness of a random attractor <inline-formula><tex-math id="M2">\begin{document}$ \mathcal{A} $\end{document}</tex-math></inline-formula> that is compact in <inline-formula><tex-math id="M3">\begin{document}$ C{([-h, 0];H^1(\mathbb{R}^n))}\times C{([-h, 0];L^2(\mathbb{R}^n))}\times L_\mu^2(\mathbb{R}^+;H^1(\mathbb{R}^n)) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M4">\begin{document}$ 1\leqslant n \leqslant 3 $\end{document}</tex-math></inline-formula>.</p>


2019 ◽  
Vol 20 (03) ◽  
pp. 2050018
Author(s):  
Lin Shi ◽  
Dingshi Li ◽  
Xiliang Li ◽  
Xiaohu Wang

We investigate the asymptotic behavior of a class of non-autonomous stochastic FitzHugh–Nagumo systems driven by additive white noise on unbounded thin domains. For this aim, we first show the existence and uniqueness of random attractors for the considered equations and their limit equations. Then, we establish the upper semicontinuity of these attractors when the thin domains collapse into a lower-dimensional unbounded domain.


2012 ◽  
Vol 2012 ◽  
pp. 1-27 ◽  
Author(s):  
Xiaoquan Ding ◽  
Jifa Jiang

This paper is devoted to a stochastic retarded lattice dynamical system with additive white noise. We extend the method of tail estimates to stochastic retarded lattice dynamical systems and prove the existence of a compact global random attractor within the set of tempered random bounded sets.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Anhui Gu ◽  
Zhaojuan Wang ◽  
Shengfan Zhou

We prove the existence of a compact random attractor for the random dynamical system generated by stochastic three-component reversible Gray-Scott system with a multiplicative white noise on infinite lattices.


2021 ◽  
pp. 2150050
Author(s):  
Yiju Chen ◽  
Chunxiao Guo ◽  
Xiaohu Wang

In this paper, we study the Wong–Zakai approximations of a class of second-order stochastic lattice systems with additive noise. We first prove the existence of tempered pullback attractors for lattice systems driven by an approximation of the white noise. Then, we establish the upper semicontinuity of random attractors for the approximate system as the size of approximation approaches zero.


2019 ◽  
Vol 19 (05) ◽  
pp. 1950037 ◽  
Author(s):  
Yangrong Li ◽  
Fuzhi Li

This paper is devoted to the convergence of bi-spatial random attractors as a family of bounded domains is extended to be unbounded. Some criteria in terms of expansion and restriction are provided to ensure that the unbounded-domain attractor is approximated by the family of bounded-domain attractors in both upper and lower semi-continuity senses. The theoretical results are applied to show that the stochastic FitzHugh–Nagumo coupled equations have an attractor in [Formula: see text]-times Lebesgue space irrespective of whether the domain is bounded or unbounded. Furthermore, we prove that the family of bounded-domain attractors continuously converges to the unbounded-domain attractor, and the latter can be constructed by the metric-limit set of all bounded-domain attractors.


2019 ◽  
Vol 185 ◽  
pp. 216-246 ◽  
Author(s):  
Huatao Chen ◽  
Juan Luis García Guirao ◽  
Dengqing Cao ◽  
Jingfei Jiang ◽  
Xiaoming Fan

Sign in / Sign up

Export Citation Format

Share Document