scholarly journals On the Performance of Wireless Video Communication Using Iterative Joint Source Channel Decoding and Transmitter Diversity Gain Technique

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Amaad Khalil ◽  
Nasru minallah ◽  
Muhammad Asfandyar Awan ◽  
Hameed Ullah Khan ◽  
Atif Sardar Khan ◽  
...  

In this research work, we have presented an iterative joint source channel decoding- (IJSCD-) based wireless video communication system. The anticipated transmission system is using the sphere packing (SP) modulation assisted differential space-time spreading (DSTS) multiple input-multiple output (MIMO) scheme. SP modulation-aided DSTS transmission mechanism results in achieving high diversity gain by keeping the maximum possible Euclidean distance between the modulated symbols. Furthermore, the proposed DSTS scheme results in a low-complexity MIMO scheme, due to nonemployment of any channel estimation mechanism. Various combinations of source bit coding- (SBC-) aided IJSCD error protection scheme has been used, while considering their identical overall bit rate budget. Artificial redundancy is incorporated in the source-coded stream for the proposed SBC scheme. The motive of adding artificial redundancy is to increase the iterative decoding performance. The performance of diverse SBC schemes is investigated for identical overall code rate. SBC schemes are employed with different combinations of inner recursive systematic convolutional (RSC) codes and outer SBC codes. Furthermore, the convergence behaviour of the employed error protection schemes is investigated using extrinsic information transfer (EXIT) charts. The results of experiments show that our proposed R a t e − 2 / 3 SBC-assisted error protection scheme with high redundancy incorporation and convergence capability gives better performance. The proposed R a t e − 2 / 3 SBC gives about 1.5 dB E b / N 0 gain at the PSNR degradation point of 1 dB as compared to R a t e − 6 / 7 SBC-assisted error protection scheme, while sustaining the overall bit rate budget. Furthermore, it is also concluded that the proposed R a t e − 2 / 3 SBC-assisted scheme results in E b / N 0 gain of 24 dB at the PSNR degradation point of 1 dB with reference to R a t e − 1 SBC benchmarker scheme.

Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 235
Author(s):  
Nasru Minallah ◽  
Khadem Ullah ◽  
Jaroslav Frnda ◽  
Korhan Cengiz ◽  
Muhammad Awais Javed

The reliable transmission of multimedia information that is coded through highly compression efficient encoders is a challenging task. This article presents the iterative convergence performance of IrRegular Convolutional Codes (IRCCs) with the aid of the multidimensional Sphere Packing (SP) modulation assisted Differential Space Time Spreading Codes (IRCC-SP-DSTS) scheme for the transmission of H.264/Advanced Video Coding (AVC) compressed video coded stream. In this article, three different regular and irregular error protection schemes are presented. In the presented Regular Error Protection (REP) scheme, all of the partitions of the video sequence are regular error protected with a rate of 3/4 IRCC. In Irregular Error Protection scheme-1 (IREP-1) the H.264/AVC partitions are prioritized as A, B & C, respectively. Whereas, in Irregular Error Protection scheme-2 (IREP-2), the H.264/AVC partitions are prioritized as B, A, and C, respectively. The performance of the iterative paradigm of an inner IRCC and outer Rate-1 Precoder is analyzed by the EXtrinsic Information Transfer (EXIT) Chart and the Quality of Experience (QoE) performance of the proposed mechanism is evaluated using the Bit Error Rate (BER) metric and Peak Signal to Noise Ratio (PSNR)-based objective quality metric. More specifically, it is concluded that the proposed IREP-2 scheme exhibits a gain of 1 dB Eb/N0 with reference to the IREP-1 and Eb/N0 gain of 0.6 dB with reference to the REP scheme over the PSNR degradation of 1 dB.


2012 ◽  
Vol 241-244 ◽  
pp. 2482-2486
Author(s):  
Wei Ming Yang ◽  
Jian Zhang ◽  
Jin Xiang Peng

For the encoding bit-rate problem in H.264 wireless video communication, the bit-rate computation model and the standard deviation distortion model were analyzed to establish the relation between the quantization parameter of encoding bit-rate and the intra-frame refresh rate of macroblocks, a new proposal of the coding rate thus put forward based on the general binomial computation model theory. Furthermore, this method not only can adaptively adjust the bit allocation and quantization parameters to prevent buffer from overflowing downward or upward under given network bandwidth, but also can apply the rate-distortion to perfect the solution method, control the encoding bits accurately and optimize the allocation between the inter-frame encoding macroblocks.


Sign in / Sign up

Export Citation Format

Share Document