scholarly journals Exact Solutions for the Conformable Space-Time Fractional Zeldovich Equation with Time-Dependent Coefficients

2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Sami Injrou

The aim of this paper is to improve a sub-equation method to solve the space-time fractional Zeldovich equation with time-dependent coefficients involving the conformable fractional derivative. As result, we obtain three families of solutions including the hyperbolic, trigonometric, and rational solutions. These solutions may be helpful to explain several phenomena in chemistry, including the combustion process. The study shows that the used method is effective and reliable and can be utilized as a substitution to construct new solutions of different types of nonlinear conformable fractional partial differential equations (NFPDEs) with variable coefficients.

2021 ◽  
Vol 2068 (1) ◽  
pp. 012005
Author(s):  
Hongkua Lin

Abstract The space-time fractional Drinfel’d-Sokolov-Wilson equations (DSWEs) has attracted many researchers’ attention in recent years. In this study, combining the (G’/G,1/G)-expansion method and a fractional wave transformation, we derive abundant explicit exact solutions of the DSWEs with the conformable fractional derivative. All of the resulting solutions include triangle, hyperbolic and rational function type. It shows this technique is effective and reliable to find exact solutions of other similar nonlinear fractional partial differential equations (NFPDEs).


2017 ◽  
Vol 6 (1) ◽  
pp. 30
Author(s):  
Mohammed Al Masalmeh

This paper investigates and states some properties of conformable fractional derivative, Further Study and applies the series solution for a case of conformable fractional Riccati deferential equation with variable coefficients “which is arising in stochastic games” or “hyperbolic boundary control." Recently, Prof. Roshdi Khalil introduced a new and interesting definition for the C F D, which is simpler than the previous definition in Caputo and Riemann-Liouville. It leads to many extensions of the classical theorems in calculus.


2020 ◽  
Vol 30 (01) ◽  
pp. 2050004 ◽  
Author(s):  
Jianli Liang ◽  
Longkun Tang ◽  
Yonghui Xia ◽  
Yi Zhang

In 2014, Khalil et al. [2014] proposed the conformable fractional derivative, which obeys chain rule and the Leibniz rule. In this paper, motivated by the monograph of Jibin Li [Li, 2013], we study the exact traveling wave solutions for a class of third-order MKdV equations with the conformable fractional derivative. Our approach is based on the bifurcation theory of planar dynamical systems, which is much different from the simplest equation method proposed in [Chen & Jiang, 2018]. By employing the traveling wave transformation [Formula: see text] [Formula: see text], we reduce the PDE to an ODE which depends on the fractional order [Formula: see text], then the analysis depends on the order [Formula: see text]. Moreover, as [Formula: see text], the exact solutions are consistent with the integer PDE. However, in all the existing papers, the reduced ODE is independent of the fractional order [Formula: see text]. It is believed that this method can be applicable to solve the other nonlinear differential equations with the conformable fractional derivative.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Fanwei Meng ◽  
Qinghua Feng

In this paper, an auxiliary equation method is introduced for seeking exact solutions expressed in variable coefficient function forms for fractional partial differential equations, where the concerned fractional derivative is defined by the conformable fractional derivative. By the use of certain fractional transformation, the fractional derivative in the equations can be converted into integer order case with respect to a new variable. As for applications, we apply this method to the time fractional two-dimensional Boussinesq equation and the space-time fractional (2+1)-dimensional breaking soliton equation. As a result, some exact solutions including variable coefficient function solutions as well as solitary wave solutions for the two equations are found.


2020 ◽  
Vol 66 (6 Nov-Dec) ◽  
pp. 771
Author(s):  
Yusuf Gurefe

In this article, we consider the exact solutions of the Hunter-Saxton and Schrödinger equations defined by Atangana's comformable derivative using the general Kudryashov method. Firstly, Atangana's comformable fractional derivative and its properties are included. Then, by introducing the generalized Kudryashov method, exact solutions of nonlinear fractional partial differential equations (FPDEs), which can be expressed with the comformable derivative of Atangana, are classified. Looking at the results obtained, it is understood that the generalized Kudryashov method can yield important results in obtaining the exact solutions of FPDEs containing beta-derivatives.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ahmad El-Ajou ◽  
Zeyad Al-Zhour

In this paper, we introduce a series solution to a class of hyperbolic system of time-fractional partial differential equations with variable coefficients. The fractional derivative has been considered by the concept of Caputo. Two expansions of matrix functions are proposed and used to create series solutions for the target problem. The first one is a fractional Laurent series, and the second is a fractional power series. A new approach, via the residual power series method and the Laplace transform, is also used to find the coefficients of the series solution. In order to test our proposed method, we discuss four interesting and important applications. Numerical results are given to authenticate the efficiency and accuracy of our method and to test the validity of our obtained results. Moreover, solution surface graphs are plotted to illustrate the effect of fractional derivative arrangement on the behavior of the solution.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Jun Jiang ◽  
Yuqiang Feng ◽  
Shougui Li

In this paper, the improved fractional subequation method is applied to establish the exact solutions for some nonlinear fractional partial differential equations. Solutions to the generalized time fractional biological population model, the generalized time fractional compound KdV-Burgers equation, the space-time fractional regularized long-wave equation, and the (3+1)-space-time fractional Zakharov-Kuznetsov equation are obtained, respectively.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Fanwei Meng ◽  
Qinghua Feng

A new fractional subequation method is proposed for finding exact solutions for fractional partial differential equations (FPDEs). The fractional derivative is defined in the sense of modified Riemann-Liouville derivative. As applications, abundant exact solutions including solitary wave solutions as well as periodic wave solutions for the space-time fractional generalized Hirota-Satsuma coupled KdV equations are obtained by using this method.


Sign in / Sign up

Export Citation Format

Share Document