scholarly journals A Hierarchical Structure Control Strategy Based on MPC for a Six-DOF Flexible Joint Manipulator

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Ningbo Jing ◽  
Ming Bu ◽  
Qi Ni ◽  
Hongguang Pan ◽  
Xuebin Qin ◽  
...  

The six-degree-of-freedom flexible joint manipulator is a complex system that suffers from the problem that the trajectory planning results are inconsistent with the control results. To keep the planned trajectory within the control range of the manipulator, a hierarchical structure control strategy is designed, which consists of a trajectory planning layer, a model predictive control layer, and a bottom control layer. Specifically, first, the target joint angles are obtained by a time-optimal trajectory planning algorithm based on a genetic algorithm in the trajectory planning layer. Second, in the model predictive control layer, considering the system physical constraints, the model predictive controller is adopted to provide the set points for the Proportion-Differentiation (PD) controllers. Finally, in the bottom control layer, the manipulator moves along the target trajectory under the PD controllers with the feedback control law. The simulation results show that, compared with the PD control strategy, the hierarchical structure control strategy can achieve better control performance and reduce the tracking error of the terminal trajectory by 33.70%.

Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 760
Author(s):  
Fang Liu ◽  
Haotian Li ◽  
Ling Liu ◽  
Runmin Zou ◽  
Kangzhi Liu

In this paper, the speed tracking problem of the interior permanent magnet synchronous motor (IPMSM) of an electric vehicle is studied. A cascade speed control strategy based on active disturbance rejection control (ADRC) and a current control strategy based on improved duty cycle finite control set model predictive control (FCSMPC) are proposed, both of which can reduce torque ripple and current ripple as well as the computational burden. First of all, in the linearization process, some nonlinear terms are added into the control signal for voltage compensation, which can reduce the order of the prediction model. Then, the dq-axis currents are selected by maximum torque per ampere (MTPA). Six virtual vectors are employed to FCSMPC, and a novel way to calculate the duty cycle is adopted. Finally, the simulation results show the validity and superiority of the proposed method.


2021 ◽  
Vol 1748 ◽  
pp. 032001
Author(s):  
Hang Shi ◽  
Xue Jiao Gong ◽  
Gong Sang Pu Chi ◽  
Juan Juan Zhang

Sign in / Sign up

Export Citation Format

Share Document