scholarly journals An Improved DCP-Based Image Defogging Algorithm Combined with Adaptive Fusion Strategy

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zhou Fang ◽  
Qilin Wu ◽  
Darong Huang ◽  
Dashuai Guan

Dark channel prior (DCP) has been widely used in single image defogging because of its simple implementation and satisfactory performance. This paper addresses the shortcomings of the DCP-based defogging algorithm and proposes an optimized method by using an adaptive fusion mechanism. This proposed method makes full use of the smoothing and “squeezing” characteristics of the Logistic Function to obtain more reasonable dark channels avoiding further refining the transmission map. In addition, a maximum filtering on dark channels is taken to improve the accuracy of dark channels around the object boundaries and the overall brightness of the defogged clear images. Meanwhile, the location information and brightness information of fog image are weighed to obtain more accurate atmosphere light. Quantitative and qualitative comparisons show that the proposed method outperforms state-of-the-art image defogging algorithms.

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 73330-73339 ◽  
Author(s):  
Jehoiada Jackson ◽  
She Kun ◽  
Kwame Obour Agyekum ◽  
Ariyo Oluwasanmi ◽  
Parinya Suwansrikham

Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1266
Author(s):  
Jing Qin ◽  
Liang Chen ◽  
Jian Xu ◽  
Wenqi Ren

In this paper, we propose a novel method to remove haze from a single hazy input image based on the sparse representation. In our method, the sparse representation is proposed to be used as a contextual regularization tool, which can reduce the block artifacts and halos produced by only using dark channel prior without soft matting as the transmission is not always constant in a local patch. A novel way to use dictionary is proposed to smooth an image and generate the sharp dehazed result. Experimental results demonstrate that our proposed method performs favorably against the state-of-the-art dehazing methods and produces high-quality dehazed and vivid color results.


2021 ◽  
Vol E104.D (10) ◽  
pp. 1758-1761
Author(s):  
Hao ZHOU ◽  
Zhuangzhuang ZHANG ◽  
Yun LIU ◽  
Meiyan XUAN ◽  
Weiwei JIANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document