image defogging
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 78)

H-INDEX

11
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Zainab Hussein Arif ◽  
Moamin A. Mahmoud ◽  
Karrar Hameed Abdulkareem ◽  
Mazin Abed Mohammed ◽  
Mohammed Nasser Al‐Mhiqani ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zhou Fang ◽  
Qilin Wu ◽  
Darong Huang ◽  
Dashuai Guan

Dark channel prior (DCP) has been widely used in single image defogging because of its simple implementation and satisfactory performance. This paper addresses the shortcomings of the DCP-based defogging algorithm and proposes an optimized method by using an adaptive fusion mechanism. This proposed method makes full use of the smoothing and “squeezing” characteristics of the Logistic Function to obtain more reasonable dark channels avoiding further refining the transmission map. In addition, a maximum filtering on dark channels is taken to improve the accuracy of dark channels around the object boundaries and the overall brightness of the defogged clear images. Meanwhile, the location information and brightness information of fog image are weighed to obtain more accurate atmosphere light. Quantitative and qualitative comparisons show that the proposed method outperforms state-of-the-art image defogging algorithms.


2021 ◽  
Vol 2035 (1) ◽  
pp. 012024
Author(s):  
Chuanxiu Li ◽  
Yongqi Xu

Author(s):  
Akey Sungheetha

Due to unfavorable weather circumstances, images captured from multiple sensors have limited the contrast and visibility. Many applications, such as web camera surveillance in public locations are used to identify object categorization and capture a vehicle's licence plate in order to detect reckless driving. The traditional methods can improve the image quality by incorporating luminance, minimizing distortion, and removing unwanted visual effects from the given images. Dehazing is a vital step in the image defogging process of many real-time applications. This research article focuses on the prediction of transmission maps in the process of image defogging through the combination of dark channel prior (DCP), transmission map with refinement, and atmospheric light estimation process. This framework has succeeded in the prior segmentation process for obtaining a better visualization. This prediction of transmission maps can be improved through the statistical process of obtaining higher accuracy for the proposed model. This improvement can be achieved by incorporating the proposed framework with an atmospheric light estimation algorithm. Finally, the experimental results show that the proposed deep learning model is achieving a superior performance when compared to other traditional algorithms.


2021 ◽  
Vol 13 (16) ◽  
pp. 3104
Author(s):  
Zhiqin Zhu ◽  
Yaqin Luo ◽  
Guanqiu Qi ◽  
Jun Meng ◽  
Yong Li ◽  
...  

Remote sensing images have been widely used in military, national defense, disaster emergency response, ecological environment monitoring, among other applications. However, fog always causes definition of remote sensing images to decrease. The performance of traditional image defogging methods relies on the fog-related prior knowledge, but they cannot always accurately obtain the scene depth information used in the defogging process. Existing deep learning-based image defogging methods often perform well, but they mainly focus on defogging ordinary outdoor foggy images rather than remote sensing images. Due to the different imaging mechanisms used in ordinary outdoor images and remote sensing images, fog residue may exist in the defogged remote sensing images obtained by existing deep learning-based image defogging methods. Therefore, this paper proposes remote sensing image defogging networks based on dual self-attention boost residual octave convolution (DOC). Residual octave convolution (residual OctConv) is used to decompose a source image into high- and low-frequency components. During the extraction of feature maps, high- and low-frequency components are processed by convolution operations, respectively. The entire network structure is mainly composed of encoding and decoding stages. The feature maps of each network layer in the encoding stage are passed to the corresponding network layer in the decoding stage. The dual self-attention module is applied to the feature enhancement of the output feature maps of the encoding stage, thereby obtaining the refined feature maps. The strengthen-operate-subtract (SOS) boosted module is used to fuse the refined feature maps of each network layer with the upsampling feature maps from the corresponding decoding stage. Compared with existing image defogging methods, comparative experimental results confirm the proposed method improves both visual effects and objective indicators to varying degrees and effectively enhances the definition of foggy remote sensing images.


Sign in / Sign up

Export Citation Format

Share Document