scholarly journals Macroeconomic Image Analysis and GDP Prediction Based on the Genetic Algorithm Radial Basis Function Neural Network (RBFNN-GA)

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Mingxun Zhu ◽  
Zhigang Meng

The prediction of gross domestic product (GDP) is a research hotspot, and its importance is self-evident. Its complex internal change mechanism also increases the difficulty of analyzing GDP data. The genetic algorithm (GA) is applied to the parameter design of the radial basis function neural network (RBFNN) based on genetic algorithm optimization (RBFNN-GA). An economic zone GDP image prediction model is proposed, which realizes the optimal design of the center vector, the base width vector of the RBFNN node function, and the weight between the hidden layer and output layer. Based on the GDP data over the years, this paper uses the RBFNN-GA prediction model to analyze and predict the GDP image and compares the image prediction results. The results show that the genetic algorithm is used to optimize RBFNN, which gives full play to the advantages of the two algorithms. The relative error of the RBFNN-GA prediction model is only 3.52%. Compared with the prediction results, the prediction accuracy is significantly higher than the ARIMA time series model and GM (1,1) model.

2012 ◽  
Vol 182-183 ◽  
pp. 1358-1361
Author(s):  
Le Xiao ◽  
Min Peng Hu

According to the fact that the use of electricity in grain depot is nonlinear time series, the article introduces the prediction model of electricity based on Radial Basis Function Neural Network, and conducts the modeling and prediction by adopting the historical electricity consumption of a typical grain depot. As the result of simulation shows, the model obtains better forecasting results in grain depot electricity.


2014 ◽  
Vol 953-954 ◽  
pp. 800-805 ◽  
Author(s):  
Meng Di Liang ◽  
Tie Zhou Wu

Concerning the prediction problems’accuracy of the state-of-charge(SOC) of the battery,this paper proposes a prediction method based on an improved genetic algorithm-radial basis function neural network for power battery charged state. The prediction method, based on intensity of information interaction and neural activity, adjusts the size of the neural network online and solves the problem that radial basis function neural network structure adjustment influences the accuracy of charged state prediction. The simulation results show that,compared with the method of radial basis function neural network based on genetic algorithm , the accuracy of charged state prediction is more stable and more precise.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
I. Jasmine Selvakumari Jeya ◽  
S. N. Deepa

A proposed real coded genetic algorithm based radial basis function neural network classifier is employed to perform effective classification of healthy and cancer affected lung images. Real Coded Genetic Algorithm (RCGA) is proposed to overcome the Hamming Cliff problem encountered with the Binary Coded Genetic Algorithm (BCGA). Radial Basis Function Neural Network (RBFNN) classifier is chosen as a classifier model because of its Gaussian Kernel function and its effective learning process to avoid local and global minima problem and enable faster convergence. This paper specifically focused on tuning the weights and bias of RBFNN classifier employing the proposed RCGA. The operators used in RCGA enable the algorithm flow to compute weights and bias value so that minimum Mean Square Error (MSE) is obtained. With both the lung healthy and cancer images from Lung Image Database Consortium (LIDC) database and Real time database, it is noted that the proposed RCGA based RBFNN classifier has performed effective classification of the healthy lung tissues and that of the cancer affected lung nodules. The classification accuracy computed using the proposed approach is noted to be higher in comparison with that of the classifiers proposed earlier in the literatures.


2013 ◽  
Vol 341-342 ◽  
pp. 748-753
Author(s):  
Jia Ni Qian ◽  
Tian Wang ◽  
Xi Peng Lv ◽  
Yun Long Tang ◽  
Xiu Fen Ye

For better realization of the function of Chemical oxygen demand (COD) online measuring instrument and improving its measurement accuracy , a good calibration and identification of signals collected is needed. During the process, the problem on parameter identification of undetermined function can be transformed into function optimization. Considering the characteristics of genetic algorithm It is introduced into the function identification of the measuring system and compare it with the radial basis function neural network. As for the premature of population evolutionary process, this article presents the method to select operators according to genetic fitness value of each individual and designs a set of system identifier based on Genetic Algorithm to identify the system. Finally, test the experimental data get from water bath in the lab dish. The relative error of output value does not exceed 8%.The experiment results show that genetic algorithm has a good effect in the system identifier on the calibration and identification of COD measuring system, better than radial basis function neural network.


Sign in / Sign up

Export Citation Format

Share Document