scholarly journals Correlation between Parturients’ Uterine Artery Blood Flow Spectra in the First and Second Trimesters of Pregnancy and Fetal Growth Restriction

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hongna Yu ◽  
Meiqin Yuan ◽  
Ling Wang ◽  
Xia Li ◽  
Meiping Jiang

Objective. To explore the correlation between parturients’ uterine artery blood flow spectra in the first and second trimesters of pregnancy and fetal growth restriction (FGR). Methods. The data of parturients treated in our hospital from February 2018 to February 2020 were retrospectively analyzed, 50 parturients with FGR were selected as the FGR group, and other 50 healthy cases were selected as the control group. In the first trimester (11-12 weeks of gestation) and the second trimester of pregnancy (13–24 weeks of gestation), the parturients of the two groups accepted the color Doppler ultrasonography (CDS), their hemodynamics indicators of uterine artery were recorded, and the correlation between their uterine artery blood flow spectra in the two periods and FGR was analyzed with the Receiver Operating Characteristic (ROC) curve. Results. No statistical differences in the parturients’ general information including age, gestational weeks, gravidity, and parity between the two groups were observed ( P  > 0.05); the newborn’s body weight, Apgar scores, number of preterm infants, and the number of infants transferring to the neonatal intensive care unit (NICU) were significantly different between the two groups ( P  < 0.05); in the first and second trimesters of pregnancy, the uterine artery pulsatility index (UtA-PI), uterine artery resistance index (UtA-RI), maximal systolic flow velocity, and systolic/diastolic (UtA-S/D) ratio were significantly higher in the FGR group than in the control group ( P  < 0.05), and the time-averaged maximal velocity (TAMX) was significantly lower in the FGR group than in the control group ( P  < 0.001); in early pregnancy, the incidence of early diastolic notch at bilateral uterine arteries between the two groups was not significantly different ( P  > 0.05), and the unilateral and total incidence in the first trimester as well as the unilateral, bilateral, and total incidence in the second trimester were significantly higher in the FGR group than in the control group ( P  < 0.05); in the first trimester, the sensitivity of detecting FGR with a uterine artery blood flow spectrum was 0.820, AUC (95% CI) = 0.840 (0.757–0.923), and in the second trimester, it was 0.860, AUC (95% CI) = 0.900 (0.832–0.968). Conclusion. There is a correlation between uterine artery blood flow spectra in the first and second trimesters of pregnancy and FGR, and the sensitivity of spectrum in the first trimester is higher than that in the second trimester, presenting a better clinical application value.

2019 ◽  
Vol 102 (3) ◽  
pp. 660-670 ◽  
Author(s):  
Sydney L Lane ◽  
Alexandrea S Doyle ◽  
Elise S Bales ◽  
Ramón A Lorca ◽  
Colleen G Julian ◽  
...  

Abstract Incomplete maternal vascular responses to pregnancy contribute to pregnancy complications including intrauterine growth restriction (IUGR) and preeclampsia. We aimed to characterize maternal vascular dysfunction in a murine model of fetal growth restriction as an approach toward identifying targetable pathways for improving pregnancy outcomes. We utilized a murine model of late-gestation hypoxia-induced IUGR that reduced E18.5 fetal weight by 34%. Contrary to our hypothesis, uterine artery blood flow as measured in vivo by Doppler ultrasound was increased in mice housed under hypobaric hypoxia (385 mmHg; 5500 m) vs normoxia (760 mmHg; 0 m). Using wire myography, uterine arteries isolated from hypoxic mice had similar vasodilator responses to the two activators A769662 and acetylcholine as those from normoxic mice, although the contribution of an increase in nitric oxide production to uterine artery vasodilation was reduced in the hypoxic vs normoxic groups. Vasoconstrictor responses to phenylephrine and potassium chloride were unaltered by hypoxia. The levels of activated adenosine monophosphate-activated protein kinase (AMPK) were reduced with hypoxia in both the uterine artery and placenta as measured by western blot and immunohistochemistry. We concluded that the rise in uterine artery blood flow may be compensatory to hypoxia but was not sufficient to prevent fetal growth restriction. Although AMPK signaling was reduced by hypoxia, AMPK was still receptive to pharmacologic activation in the uterine arteries in which it was a potent vasodilator. Thus, AMPK activation may represent a new therapy for pregnancy complications involving reduced uteroplacental perfusion.


2020 ◽  
Vol 598 (18) ◽  
pp. 4093-4105
Author(s):  
Sydney L. Lane ◽  
Julie A. Houck ◽  
Alexandrea S. Doyle ◽  
Elise S. Bales ◽  
Ramón A. Lorca ◽  
...  

2020 ◽  
pp. 48-51
Author(s):  
G.A. Ikhtiyarova ◽  
M.J. Aslonova ◽  
N.K. Dustova

The article presents the effectiveness of Dopplerometry for assessing blood flow in large vessels, including the umbilical, uterine artery and middle cerebral artery, 90 women were examined in the second trimester, and 45 women showed signs of placental insufficiency, such as fetal growth restriction syndrome at 28-34 weeks. The results of the study showed that 23 (51.1%) women had signs of subcompensated insufficiency of uteroplacental blood flow, and 11 (24.4%) women showed signs of fetal-placental blood flow. The study of the uteroplacental-fetal blood flow allows early detection of early signs of impairment in the fetoplacental system and its timely correction.


Sign in / Sign up

Export Citation Format

Share Document