scholarly journals Adaptive Strategies Based on Differential Evolutionary Algorithm for Many-Objective Optimization

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yifei Sun ◽  
Kun Bian ◽  
Zhuo Liu ◽  
Xin Sun ◽  
Ruoxia Yao

The decomposition-based algorithm, for example, multiobjective evolutionary algorithm based on decomposition (MOEA/D), has been proved effective and useful in a variety of multiobjective optimization problems (MOPs). On the basis of MOEA/D, the MOEA/D-DE replaces the simulated binary crossover (SBX) operator with differential evolution (DE) operator, which is used to enhance the diversity of the solutions more effectively. However, the amplification factor and the crossover probability are fixed in MOEA/D-DE, which would lead to a low convergence rate and be more likely to fall into local optimum. To overcome such a prematurity problem, this paper proposes three different adaptive operators in DE with crossover probability and amplification factors to adjust the parameter settings adaptively. We incorporate these three adaptive operators in MOEA/D-DE and MOEA/D-PaS to solve MOPs and many-objective optimization problems (MaOPs), respectively. This paper also designs a sensitive experiment for the changeable parameter η in the proposed adaptive operators to explore how η would affect the convergence of the proposed algorithms. These adaptive algorithms are tested on many benchmark problems, including ZDT, DTLZ, WFG, and MaF test suites. The experimental results illustrate that the three proposed adaptive algorithms have better performance on most benchmark problems.

2021 ◽  
pp. 1-21
Author(s):  
Xin Li ◽  
Xiaoli Li ◽  
Kang Wang

The key characteristic of multi-objective evolutionary algorithm is that it can find a good approximate multi-objective optimal solution set when solving multi-objective optimization problems(MOPs). However, most multi-objective evolutionary algorithms perform well on regular multi-objective optimization problems, but their performance on irregular fronts deteriorates. In order to remedy this issue, this paper studies the existing algorithms and proposes a multi-objective evolutionary based on niche selection to deal with irregular Pareto fronts. In this paper, the crowding degree is calculated by the niche method in the process of selecting parents when the non-dominated solutions converge to the first front, which improves the the quality of offspring solutions and which is beneficial to local search. In addition, niche selection is adopted into the process of environmental selection through considering the number and the location of the individuals in its niche radius, which improve the diversity of population. Finally, experimental results on 23 benchmark problems including MaF and IMOP show that the proposed algorithm exhibits better performance than the compared MOEAs.


2015 ◽  
pp. 1246-1276
Author(s):  
Wen Fung Leong ◽  
Yali Wu ◽  
Gary G. Yen

Generally, constraint-handling techniques are designed for evolutionary algorithms to solve Constrained Multiobjective Optimization Problems (CMOPs). Most Multiojective Particle Swarm Optimization (MOPSO) designs adopt these existing constraint-handling techniques to deal with CMOPs. In this chapter, the authors present a constrained MOPSO in which the information related to particles' infeasibility and feasibility status is utilized effectively to guide the particles to search for feasible solutions and to improve the quality of the optimal solution found. The updating of personal best archive is based on the particles' Pareto ranks and their constraint violations. The infeasible global best archive is adopted to store infeasible nondominated solutions. The acceleration constants are adjusted depending on the personal bests' and selected global bests' infeasibility and feasibility statuses. The personal bests' feasibility statuses are integrated to estimate the mutation rate in the mutation procedure. The simulation results indicate that the proposed constrained MOPSO is highly competitive in solving selected benchmark problems.


Author(s):  
Xinghuo Yu ◽  
◽  
Baolin Wu

In this paper, we propose a novel adaptive penalty function method for constrained optimization problems using the evolutionary programming technique. This method incorporates an adaptive tuning algorithm that adjusts the penalty parameters according to the population landscape so that it allows fast escape from a local optimum and quick convergence toward a global optimum. The method is simple and computationally effective in the sense that only very few penalty parameters are needed for tuning. Simulation results of five well-known benchmark problems are presented to show the performance of the proposed method.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Kun Li ◽  
Huixin Tian

This paper proposes a hybrid scatter search (SS) algorithm for continuous global optimization problems by incorporating the evolution mechanism of differential evolution (DE) into the reference set updated procedure of SS to act as the new solution generation method. This hybrid algorithm is called a DE-based SS (SSDE) algorithm. Since different kinds of mutation operators of DE have been proposed in the literature and they have shown different search abilities for different kinds of problems, four traditional mutation operators are adopted in the hybrid SSDE algorithm. To adaptively select the mutation operator that is most appropriate to the current problem, an adaptive mechanism for the candidate mutation operators is developed. In addition, to enhance the exploration ability of SSDE, a reinitialization method is adopted to create a new population and subsequently construct a new reference set whenever the search process of SSDE is trapped in local optimum. Computational experiments on benchmark problems show that the proposed SSDE is competitive or superior to some state-of-the-art algorithms in the literature.


Sign in / Sign up

Export Citation Format

Share Document